
Flows

v1.28

Sirenia

September 23, 2020

Flows September 23, 2020

Contents

1 Inputs 7

2 Fields 8

3 Global objects 8
3.1 Dialog . 8

3.1.1 Info dialog . 8
3.1.2 Warn dialog . 10
3.1.3 Input dialog . 11
3.1.4 HTML based input dialog . 24

3.2 Flow . 26
3.2.1 Shared functionality . 26
3.2.2 Run flow . 27

3.3 Wait . 28
3.3.1 Wait for seconds . 28
3.3.2 Wait for milliseconds . 29
3.3.3 Wait for field . 29
3.3.4 Wait for field to disappear . 30
3.3.5 Wait for window . 30
3.3.6 Wait for lock . 31
3.3.7 Wait for click . 31
3.3.8 Wait for predicate . 32

3.4 Xml . 33
3.4.1 Load xml . 33
3.4.2 Load XML from url . 34

3.5 XmlDoc . 34
3.5.1 XPath . 35
3.5.2 JSON . 35

3.6 HTTP . 36
3.6.1 GET . 36
3.6.2 POST . 37
3.6.3 PUT . 37
3.6.4 DELETE . 38

3.7 FTP . 39
3.7.1 Read . 39
3.7.2 Write . 40

Sirenia 2

Flows September 23, 2020

3.8 Db . 40
3.8.1 Connect . 40
3.8.2 Database . 41
3.8.3 Transaction . 42
3.8.4 Database . 43

3.9 Csv . 43
3.9.1 Parse . 43
3.9.2 Stringify . 45

3.10 Excel . 45
3.10.1 Load . 45
3.10.2 Delete a sheet . 47
3.10.3 Update single cell . 47
3.10.4 Update multiple cells . 48
3.10.5 Deleting rows and columns from a sheet . 49

3.11 Settings . 49
3.11.1 Example writing a value . 50
3.11.2 Example reading a value . 50
3.11.3 Settings.Manatee . 50
3.11.4 Example writing values . 50
3.11.5 Example reading a value . 51

3.12 Log . 51
3.12.1 Stats from running flow . 51
3.12.2 Warn . 51
3.12.3 Info . 52
3.12.4 Set log level . 52

3.13 HID . 53
3.13.1 Block input . 53

3.14 HID.Mouse . 53
3.14.1 Move cursor relative . 54
3.14.2 Move to an absolute position . 54
3.14.3 Move to a Field . 54
3.14.4 Hold a mouse button down . 55
3.14.5 Release a held downmouse button . 55
3.14.6 Click with a mouse button . 55

3.15 HID.Keyboard . 56
3.15.1 Key down . 61
3.15.2 Key up . 61
3.15.3 Key press . 61

Sirenia 3

Flows September 23, 2020

3.15.4 Input . 61
3.15.5 Send . 62

3.16 Window . 62
3.16.1 Title . 62
3.16.2 Minimize . 63
3.16.3 Is minimized . 63
3.16.4 Maximize . 63
3.16.5 Is maximized . 64
3.16.6 Focus . 64
3.16.7 Send keys . 65
3.16.8 Restore . 66
3.16.9 Windowwith modal dialog shown . 66
3.16.10 Shown with title . 66
3.16.11 Dim . 67

3.17 Windows . 67
3.17.1 All windows . 67
3.17.2 Windows for current application . 68
3.17.3 Primary window . 68
3.17.4 Frontmost/focused window . 68
3.17.5 Window Proxy . 69

3.18 Processes . 72
3.18.1 All processes . 72
3.18.2 Current . 72
3.18.3 Spawning new processes . 72
3.18.4 Process proxy . 73

3.19 Debug . 76
3.19.1 Show dialog . 76
3.19.2 ger . 77

3.20 Fs . 78
3.20.1 System folders . 78
3.20.2 List (ls) . 79
3.20.3 Make a new directory . 80
3.20.4 Move file . 80
3.20.5 Copy file . 81
3.20.6 Delete file . 81
3.20.7 Check file presence . 81
3.20.8 Encrypt file . 82
3.20.9 Decrypt file . 82

Sirenia 4

Flows September 23, 2020

3.20.10 Read . 83
3.20.11 Write . 83
3.20.12 Synchronise two directories . 84
3.20.13 Temp file . 84

3.21 App . 85
3.21.1 Location . 85
3.21.2 Navigate . 85
3.21.3 Session write . 86
3.21.4 Session read . 87
3.21.5 Session delete . 87
3.21.6 Quit . 88
3.21.7 Focused field . 88
3.21.8 Getting access to an embedded browser instance for native apps 89
3.21.9 Set browser popup behavior . 92

3.22 Sticky . 92
3.22.1 Open . 93
3.22.2 Model . 96
3.22.3 Close . 97
3.22.4 Hide . 97
3.22.5 Show . 98

3.23 Timer . 98
3.23.1 Start . 98
3.23.2 Log . 99
3.23.3 Stop . 100

3.24 Notifications . 100
3.24.1 Show . 100
3.24.2 Update . 102
3.24.3 Close . 103

3.25 Tasks . 103
3.25.1 Run . 103
3.25.2 Wait for all tasks to complete . 105
3.25.3 Wait for any tasks to complete . 106
3.25.4 JavaScript Task . 107

3.26 Guid . 107
3.26.1 Get . 107

3.27 Tables . 107
3.27.1 Read table as a map . 109
3.27.2 Read table as list of rows . 110

Sirenia 5

Flows September 23, 2020

3.27.3 Update the contents of a table . 111
3.27.4 Use the contents of a Table as options for a typeahead 112
3.27.5 Tables as queues . 113

3.28 Env . 113
3.28.1 Username . 113
3.28.2 Name of machine . 113
3.28.3 Domain . 114
3.28.4 Groups . 114
3.28.5 Primary screen . 115
3.28.6 Screens . 115
3.28.7 Version . 116
3.28.8 Branch . 116

3.29 Crypto . 116
3.29.1 Encrypt . 117
3.29.2 Decrypt . 117

3.30 Clipboard . 118
3.30.1 Get . 118
3.30.2 Set . 119
3.30.3 Clear . 119
3.30.4 Copy . 120
3.30.5 Cut . 120
3.30.6 Paste . 120

3.31 Desktop . 121
3.31.1 All . 121
3.31.2 Current . 121
3.31.3 Add a new desktop . 122
3.31.4 Moving windows between virtual desktops . 122
3.31.5 Switching between desktops . 122

3.32 Html parsing and querying . 122
3.32.1 Loading data . 123

3.33 HtmlDoc . 123
3.33.1 XPath . 123
3.33.2 Converting to json . 123
3.33.3 QuerySelectorAll . 124
3.33.4 QuerySelector . 124
3.33.5 Table . 124

3.34 Tracer . 125
3.34.1 Delay . 126

Sirenia 6

Flows September 23, 2020

3.34.2 Pause . 126
3.34.3 Resume . 126
3.34.4 Message . 126

3.35 Manatee . 127
3.35.1 Shutdown . 127
3.35.2 Restart . 127

3.36 HL7 . 127
3.36.1 Parse . 128

3.37 Plugins . 128
3.37.1 Loading a plugin . 128
3.37.2 Starting and configuring a plugin . 128
3.37.3 Stop a running plugin . 129
3.37.4 Check the status of a plugin . 129

This page documents the API for interacting with fields and the global objects in flows.

Ingeneral flowsareJavaScript codeand thusanyvalidJavaScript is allowed. Seehttps://developer.mozilla.org/en-
US/docs/Web/JavaScript/A_re-introduction_to_JavaScript for a JavaScript intro. The objects In-
puts, Fields and all the rest of the modules listed below are made available for all flows s.t. they
can be accessed in the JavaScript code.

We include theutility librarylodash 4.7.10 in all flows. Seehttps://lodash.com/docs theavailable
functions.

There is also a tutorial to the Cuesta tool which also contains a few examples of flows. It is highly
recommend that you go through the tutorial before diving into this reference documentation.

1 Inputs

Inputs to a flow can be accessed via the Inputs array. Inputs are generally strings.

Example

var mi = Inputs[”myinput”];

Sirenia 7

https://lodash.com/docs

Flows September 23, 2020

2 Fields

Fields representuser-interfaceelementswhich canbemanipulated froma flow. Thebasicsof defining
a fields and how to use it in flows is described in detail in the field documentation.

3 Global objects

The global objects listed below are available in all flows.

3.1 Dialog

The dialog object contains methods for presenting the user with information or requesting informa-
tion from the user at runtime.

3.1.1 Info dialog

Shows a blue information dialog with an OK button. The flow does not proceed until the user has
clicked OK. Options is an optional parameter.

Parameters

• header is the title of the dialog
• text is the text content shown
• options is a JavaScript object, supported properties:

– buttons is an array of buttons to display in the bottom part of the dialog
– timeout an int determining when the dialog should auto-close
– sound a string (one of asterisk, beep, exclamation, hand, question) which in-
dicates a system sound to play once the dialog is shown

– throws a boolean indicating whether to throw an exception if the dialog was cancelled -
default is true

The buttons array consists of button objects with the following properties:

• value the text to display on the button (should be unique for a dialog)
• isDefault (boolean) a true/false value indicating whether or not this button is the default
(i.e. will be activated on the enter-key) - should only be set to true for one button per dialog --
default is false

Sirenia 8

Flows September 23, 2020

• isCancel (boolean) indicating whether or not the button should cancel the dialog -- default
is false

The default value for buttons is an ”OK” button:

[
{ ’value’: ’OK’ }

]

The button clickedwill be available as a property namedbutton on the return value from the dialog.
If the user clicks a cancel button then an exception is thrown.

Example

Dialog.info(”Hello”, ”This is some text to be shown.”, {});

With options:

Dialog.info(
”Hello”,
”Some text - I will max be shown for 10 secs.”,
{ timeout: 10 }

);

With pre-defined buttons:

var r = Dialog.info(
”Hello”,
”Do you want to continue”,
{ timeout: 10
, buttons: [

{ ’value’: ’No’, ’isCancel’: true },
{ ’value’: ’Maybe’ },
{ ’value’: ’Yes’ },

]
}

);
if (r.button == ’Yes’) {
// user answered yes - we can continue
...

}

Sirenia 9

Flows September 23, 2020

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.1.2 Warn dialog

Shows a redwarning dialog to the user with an OK button. Similar to the info dialog, but red. Options
is an optional parameter.

Parameters

• header is the title of the dialog
• text is the text content shown
• options is a JavaScript object, supported properties:

– buttons is an array of buttons to display in the bottompart of the dialog (see info-dialog
for further information)

– timeout an int determining when the dialog should auto-close
– sound a string (one of asterisk, beep, exclamation, hand, question) which in-
dicates a system sound to play once the dialog is shown

– throws a boolean indicating whether to throw an exception if the dialog was cancelled -
default is true

Example

Dialog.warn(”Warning!!”, ”This is some text to be shown. Consider yourself warned.”);

// Do not throw an exception when dialog is cancelled
Dialog.warn(”Take heed”, ”You may enter at your peril”, { throws: false });

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

Sirenia 10

Flows September 23, 2020

3.1.3 Input dialog

Shows a dialog intowhich the usermay input data. The type of datawhich can be input is determined
by the options parameter.

Parameters

• header is the title of the dialog
• text is the text content shown
• options is a JavaScript objectwhichdetermines the input theuser shouldprovide. Eachprop-
erty on the object is one input the user must provide. The name of each property is used when
returning the results. It can also contain the following properties which affect the dialog itself:

– buttons is an array of buttons to display in the bottompart of the dialog (see info-dialog
for further information)

– throws a boolean indicating whether to throw an exception if the dialog was cancelled -
default is true

– submitOnValidation is a boolean flag that determines whether or not the dialog will
be automatically submitted when all fields validate - or not

– maxDialogWidth/maxDialogHeight (int) change the default maximum width and
height for the window,

– promptWidth sets the with of the label/prompt
– sound a string (one of asterisk, beep, exclamation, hand, question) which in-
dicates a system sound to play once the dialog is shown

– dialogPositionTop/dialogPositionLeft (int) to change the default position of
the dialog. Note that if one of these properties are set then the dialog will be positioned
on the main display.

– foregroundColor and backgroundColor can be used to set the overall colors for
the dialog (use html/hex encoded strings)

• savedInputs is an optional result from a previous display of the dialog - this can be used to
pre-fill the dialog with inputs already filled

• onlyValidateOnSubmitwill when set totrue not do any validation until the dialog is sub-
mitted (default false)

Inputs given as complex objects

If the value of a property of options is either a complex object or a function it is treated as an input
element. If you supply an object then the following properties are available to specify:

Each input should contain the following variables:

Sirenia 11

Flows September 23, 2020

• type to determine which UI element to display, TEXT, PASSWORD, FILE, SELECT, RADIO,
DATE,MULTITEXT,TYPEAHEAD,HEADER,DIVIDER,SPACER,LISTOFandDESCRIPTION
are the supported options - see options for each type below

• dependsOn is an expression that determineswhen this input should be shown. You can either
specify thenameofanotherproperty - inwhichcase the inputwill be shown if theotherproperty
has a value, or you can specify a <name-of-other-property>=<value> type string - in
which case the input will be shown if the other property has the given value. If dependsOn is
empty the input will always be shown. Using a ~ instead of = in the expression will cause the
value to be interpreted as a regular expression (from 1.8.0).

Optionally the following properties may be specified as well:

• prompt is the text which is displayed as an hint to the user for this option.
• promptWidth sets the with of the label/prompt
• resetOnHide determines whether to clear the value of the input when it is hidden because a
dependency fails (default is false)

An example of an input dialog with a few objects is:

Dialog.input(’header goes here’, ’text goes here’, {
myTextInput: {
prompt: ’Input text here’,
type: ’TEXT’,
value: ’Default value’

},
anotherInput: {
prompt: ’Another prompt’,
type: ’PASSWORD’

}
});

This will display a dialog with two inputs, one for text and one for password.

Inputs given as functions

If the value of an option is a function then that function is invoked with the current state of the form
allowing you to build complex interacting elements. The following example demonstrates this by hav-
ing the properties of the RADIO input determined by the previous inputs.

Dialog.input(’header goes here’, ’text goes here’, {
radioOptions: {
prompt: ’Options separated by ”,”’,

Sirenia 12

Flows September 23, 2020

type: ’TEXT’,
value: ’a,b,c’

},
radioPrompt: {
prompt: ’The prompt for the radio’,
type: ’TEXT’,
value: ’Radio’

},
radioPromptWidth: {
prompt: ’The prompt width for the radio’,
type: ’TEXT’,
value: ’150’

},
radioOrientation: {
prompt: ’Orientation’,
type: ’RADIO’,
selectBetween: [’vertical’, ’horizontal’]

},
radioTableLayout: {
prompt: ’Table layout’,
type: ’MULTITEXT’,
texts: [
{ name: ’columns’, prefix: ’Columns’, value: ”0” },
{ name: ’rows’, prefix: ’Rows’, value: ”0” }

]
},
radioVisible: {
prompt: ’Show RADIO’,
type: ’RADIO’,
selectBetween: [’No’, ’Yes’],
value: ’No’

},
d: { type: ’DIVIDER’ },
radio: function (s) {
return {
prompt: s.radioPrompt,
selectBetween: s.radioOptions && s.radioOptions.split(’,’),

Sirenia 13

Flows September 23, 2020

orientation: s.radioOrientation,
promptWidth: parseInt(s.radioPromptWidth || ”150”),
columns: parseInt(s.radioTableLayout && s.radioTableLayout.columns || ”0”),
rows: parseInt(s.radioTableLayout && s.radioTableLayout.rows || ”0”),
dependsOn: s.radioVisible == ’Yes’,
type: ’RADIO’

};
}

});

When you run this flow you can use the inputs above the divider to control the appearance of theRA-
DIO. The dependsOn property can be set to a boolean value to do complex dependency validations.

Figure 1: Example of a dynamic radio input

Sirenia 14

Flows September 23, 2020

The properties of each option item depends on the value of its type:

TEXT and PASSWORD

• promptAlignment is the alignment the prompt should follow. Available options are: ”Cen-
ter”, ”Justify”, ”Left” (default), ”Right”.

• value is an optional default value for the input.
• prefix and suffix are texts to be shown before and after the input field.
• focus is whether to focus this field - if multiple fields have focus set to true then the last one
will be focused.

• multilinewhether multiple lines are allowed (default false).
• validation is a validation object (see below).

FILE and DATE

• value is an optional default value for the input - for DATE this may be a javascript Date object
• focus is whether to focus this field.
• validation is a validation object (see below).

SELECT and RADIO

• value is an optional default value for the input,
• selected is whether or not the option starts out as selected (checked) or not - only applicable
for SELECT

• selectBetween is a array of strings which determines the available dropdown options if the
type has value SELECT,

• orientation can be either ’vertical’ or ’horizontal’ and determines the layout direction,
• columns is thenumberof columns todisplay input elements in tohelpwith alignment - setting
columnswill void the orientation setting,

• rows is the number of rows to display input elements in to help with alignment,
• focus is whether to focus this field
• validation is a validation object (see below).

CHECKBOX

• value is an optional default value for the input,
• selected is whether or not the option starts out as selected (checked) or not - only applicable
for SELECT

• options is a array of objects which determines the checkboxes,

Sirenia 15

Flows September 23, 2020

• orientation can be either ’vertical’ or ’horizontal’ and determines the layout direction,
• columns is thenumberof columns todisplay input elements in tohelpwith alignment - setting
columnswill void the orientation setting,

• rows is the number of rows to display input elements in to help with alignment,
• focus is whether to focus this field
• validation is a validation object (see below).

Each object in the options array can have the following properties:

• name the name of the item,
• suffix/prefix the suffix and prefix shown,
• value the value
• selectedwhether the checkbox is selected.

A simple example of a CHECKBOX input could be:

Dialog.input(..., {
cb: {
prompt: ”Checkbox example”,
type: ”CHECKBOX”,
options: [{name: ”cb1”, selected: true}, {name: ”cb2”}]

}
});

HEADER and DESCRIPTION

• value is used as the text displayed.

MULTITEXT

• texts is an array of text inputs to show - each input may have the following properties set;
– name is used to refer to the input,
– prefix and suffix are texts to be shown before and after the input field,
– value is the default value,
– multilinewhether multiple lines are allowed (default false)
– focus is whether to focus this field
– preselect an object which will be pre-selected
– validation is a validation object (see below).

TYPEAHEAD

Sirenia 16

Flows September 23, 2020

• selectFrom is the construction which determines what the user is able to select from.

The value of selectFrom can be a list of strings in which case the list is simply displayed. E.g.:
...
myProp: {
type: ’TYPEAHEAD’,
selectFrom: [’Option 1’, ’Option 2’]

}
...

It can be a list of objects with a value or display property that is displayed for the user. As in
the example below where the user can select or get auto-completion on ’a’ and ’b’.
...
myProp: {
type: ’TYPEAHEAD’,
selectFrom: [
{display: ’a’, id: 100},
{display: ’b’, id: 100}

],
preselect: { display: ’a’, id: 100}

}
...

The value of the myProp property after the input dialog is completed will be the full object selected,
e.g. {display: ’a’, id: 100}.

You can also supply arbitrary objects and a formatting string.
...
myProp: {
type: ’TYPEAHEAD’,
selectFrom: {
format: ’{{foo}} with id {{id}}’,
items: [
{foo: ’a’, id: 100},
{foo: ’b’, id: 100}

],
}

}
...

Sirenia 17

Flows September 23, 2020

This will display e.g. ”a with id 100” in the suggestion dropdown. The object selectedwill be available
in themyPropproperty (not just the formatted string). In addition to theformat string, you can also
set the following options:

• minInputLength theminimumnumber of characters the usermust input in order to get sug-
gestions

• filterModewhichmode should be used to filter the suggestions; select from ’contains’,
’startswith’, ’endswith’.

A callback function can also be used. The function supplied will get invoked with the string entered
by the user. E.g.:
...
myProp: {
type: ’TYPEAHEAD’,
selectFrom: {
format: ’{{foo}} with id {{id}}’,
items: function(searchString) {
return [
{foo: ’a’, id: 100},
{foo: ’b’, id: 100}

];
},

}
}
...

In this case we’re not using the input for anything but other cases might do so, like when fetching
options from e.g. a remote resource (via http or similar).

Lastly, the contents of a Table can be used as options.
...
myProp: {
type: ’TYPEAHEAD’,
selectFrom: Table.map(’nameOfTable’, ’propToIndexBy’).selectFrom(’{{foo}} with id {{id}}’)

}
...

This will use the table rows and generate a formatted string for each row - the result will again be an
object representing the row.

TABLE

Sirenia 18

Flows September 23, 2020

The TABLE input can be used for tabular (ie like a spreadsheet) input. It supports the following prop-
erties.

• tableHeader is a list of strings or a list of objects with a name and a type and defines the
columns of a table

• tableRows is the initial list of rows - the user may addmore rows to the table

An example is given here:

var result = Dialog.input(’Table Example’, ’Show a table in an input dialog’, {
t: {
type: ’TABLE’,
prompt: ’Enter names and ages’,
tableHeader: [{name: ’Name’, type: ’string’},{name: ’Age’, type: ’int’}],
tableRows: [[’Alice’, 42], [’Bob’, 43]]

}
});

LIST OF

The LISTOF input type is a compound input type. It can be used to allow the user to input multiple
items each composed of a number of other input types. For instance; to input a number of measure-
ments we could make a configuration as follows:

var results = Dialog.input(’List of example’, ’Input a number of measurements’, {
measurements: {
prompt: ’Add measurements here’,
type: ’LISTOF’,
template: {
mtype: {
prompt: ’Measurement type’,
type: ’RADIO’,
selectBetween: [’TypeA’, ’TypeB’]

},
mvalue: {
prompt: ’Measurement value’,
type: ’TEXT’

}
},
maxItems: 5,

Sirenia 19

Flows September 23, 2020

maxHeight: 200,
initialItems: 2

}
});

Which will result in the following dialog being shown:

Figure 2: LISTOF dialog input

The property values available for a LISTOF input is:

• templatewhich contains an object defining a single input element
• maxItems the max number of items a user is allowed to input,
• maxHeight the max height of the LISTOF input
• initialItems the number of initial items in the LISTOF list

DIVIDER

The DIVIDER type does not support any options.

SPACER

Has no options either, will provide some vertical space.

Sirenia 20

Flows September 23, 2020

Validation

Input fieldsmay have a validation object in their optionswhich determines valid values for the inputs.
The validation object has the following properties;

• isRequired boolean value indicating whether a valuemust be supplied for the field,
• regex is a regular expressionwhichmustmatch the given input in order for the field to validate,
• message is an optionalmessage to be displayed in case validation fails.

Use either isRequired or regex, not both at the same time.

Example

var result = Dialog.input(
’This is a demo’,
’Some description goes here.’, {
’submitOnValidation’: true,
’maxDialogHeight’: 1000,
’maxDialogWidth’: 2000,
’name’: {
’prompt’: ’Name’,
’type’: ’TEXT’,
’suffix’: ’mm’

},
’colorRadio’: {
’prompt’: ’Choose color’,
’type’: ’RADIO’,
’selectBetween’: [’red’, ’green’, ’blue’]

},
’foo’: {
’prompt’: ’Show only on blue’,
’dependsOn’: ’colorRadio=blue’,
’type’: ’TEXT’

},
’colorCombo’: {
’prompt’: ’Choose color’,
’type’: ’SELECT’,
’selectBetween’: [’red’, ’green’, ’blue’],
’validation’: {’isRequired’: true, ’message’: ”Color must be selected”}

},

Sirenia 21

http://regex101.com

Flows September 23, 2020

’header’ : {
’type’: ’HEADER’,
’value’: ’Header #1’

},
’desc’: {
’type’: ’DESCRIPTION’,
’value’: ’Super long description possible. When a moon hits your eye like a big pizza pie. Thats amore. When the world seems to shine like youve had too much wine. Thats amore. Bells will ring ting-a-ling-a-ling, ting-a-ling-a-ling. And youll sing Vita bella. Hearts will play tippy-tippy-tay, tippy-tippy-tay’

},
’date’: {
’type’: ’DATE’

},
’multi’: {
’type’: ’MULTITEXT’,
’prompt’: ’Some complex texts’,
’texts’: [
{ ’name’: ’a’, ’prefix’: ’pre’, ’suffix’: ’suf’, ’validation’: { ’regex’: ’a+’, ’message’: ’Must contain at least one \”a\”’ } },
{ ’name’: ’b’, ’prefix’: ’>’, ’suffix’: ’<’ }

]
}

}
);
// Now use the input values for something
var name = result.name;
var eyecolor = result.colorRadio;

This will result in the dialog shown below.

Sirenia 22

Flows September 23, 2020

Figure 3: Input dialog examples

It is possible to bypass validation by using the attribute bypassValidation on a button in the dia-
log. When the user clicks this button then the dialog is closed and the intermediate result is returned
to the flow.

Resuming from a partially filled-in form

var inputOptions = {
’name’: {
’prompt’: ’Name’,
’type’: ’TEXT’,
’suffix’: ’mm’

},
buttons: [

{ ’value’: ’No’, ’isCancel’: true },
{ ’value’: ’Continue’, bypassValidation: true },
{ ’value’: ’Ok’ },

]
}

};
var results = Dialog.input(”Input 1”, ”1”, inputOptions);

Sirenia 23

Flows September 23, 2020

if (partialResults.button == ’Continue’) {
// Show an indentical dialog but pre-fill values from Dialog 1
results = Dialog.input(”Input 2”, ”2”, inputOptions, results);

}

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.1.4 HTML based input dialog

In addition to the normal native input function we also support using HTML input forms. This ap-
proach does not bring as much built-in functionality - validation, conditional displays etc - but offers
a larger degree of customization in the appearance of the displayed form. It works by taking the form,
either HTML directly or a URL to a page containing the form and then displaying this in a dialog. When
the user accepts the form (clicks ”ok”) the page is parsed and information about the contents of the
individual fields are extracted for use in the flow.

The input values entered can be retrieved from the dialog result by using the name or id prop-
erty of the input element. For more info on forms see e.g. https://developer.mozilla.org/en-
US/docs/Learn/HTML/Forms. For a concrete example with a number of different input elements see
e.g. http://sirenia.eu/tutorial/ie-form.html. div tags with a input tag will also be returned - the id
of the divwill be used as key.

Note that some new input types introduced in the html5 standard are not currently supported. Un-
supported input types will fall back to type ’text’.

Parameters

• header - [string] the header to display
• text - [string] a longer text to display
• options - [object] containing options for the dialog itself:
• source - [string] the form to display - either HTML directly or a URL
• embed - [bool] if true, manatee will add some styling and html/body tags to the page, if false
nothing is added

Sirenia 24

Flows September 23, 2020

• maxDialogWidth - [int] the max width the dialog must take
• maxDialogHeight - [int] the max height the dialog must take
• throwsaboolean indicatingwhether to throwanexception if thedialogwascancelled -default
is true

Example

Source directly as an option.

var result = Dialog.inputHtml(
’Header’,
’Some more text’,
{
source: ”<input type=’text’ id=’myText’></input>”,
embed: true

});
// The result will have a ‘myText‘ property since we added the ‘id‘ property with the value to the input field
Debug.showDialog(”Result was ”+result.myText);

Using a remote document.

var result = Dialog.inputHtml(
’Header’,
’Some more text’,
{
source: ”http://sirenia.eu/tutorial/form.html”,
embed: true

});
// The result will have a ‘myText‘ property since we added the ‘id‘ property with the value to the input field
Debug.ger(result);

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

Sirenia 25

Flows September 23, 2020

3.2 Flow

The flow object provides a mechanism to invoke other flows. This allows some flows to become su-
perflows connectingmultiple flows together. Flows fromother applicationsmay also be invoke in this
fashion.

3.2.1 Shared functionality

You can use the include(...) method to include code from a MODULE typed flow. This is great if
you have some code that you want to share betweenmultiple flows.

The code in themodule flow can export its functionality by assigning variables to the globalexports
object. See the example below.

Parameters

• name the name or subject of the module to include

Examples

We’ll define a handy mathmodule (given the subject = math):

var times = function(a, b) {
return a*b;

}

var plus = function(a, b) {
return a+b;

}

var bigNumber = 10000;

exports.times = times;
exports.plus = plus;
exports.bn = bigNumber;

and this can then be used in another flow:

var math = Flow.include(’math’);
var ten = math.times(2, 5);

Sirenia 26

Flows September 23, 2020

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.2.2 Run flow

Run another flow with the run(...) method. You provide the input to the flow and will get the
outputs of the flow.

Parameters

• name the name of the flow to run - if there are 0 or more than 1 flow with this name an Error
will be thrown

• environment is a JavaScript object containing the input to the flow. Each property on the ob-
ject will bemapped to an input. Currently only string values are supported. Inputs are accessed
in the running flow with Inputs[”<inputname>”] e.g. Inputs[”myinput”] or simply
<inputname> e.g. myinput (if the is a valid JavaScript identifier).

Examples

var result = Flow.run(”MyOtherFlow”, { ”inputA”: ”AAA”, ”inputB”: ”BBB” });
// ”MyOtherFlow” will now get executed, the inputs may be accessed via e.g. Inputs[”inputA”] in ”MyOtherFlow”
var outputC = result.outputC; // providing ”MyOtherFlow” has a defined output called ”outputC”

It is possible to chain flows like:

var result = Flow.run(”RunLast”, Flow.run(”RunFirst”, {}));

Flow.run to run flows in another session

In order to run a flow in another session you need to provide a third argument to Flow.run. This
”session selector” argument can either be a function acting as a predicate on the states of the ses-
sions or a an object that contains keys and values to match.

Using a predicate

We’ll assume we have the following sessions currently available.

• Session 1 with app A (instance 1) has the following state; s1 = v1.

Sirenia 27

Flows September 23, 2020

• Session 2 with app A (instance 2) has the following state; s1 = v2.

If we want to run the flow ”foo” in session 2 then we do:

Flow.run(”foo”, null, function(state) { return state[”s1”] === ”v2”; });

Using a key-value match

Using the same sessions described above we canmatch session 2 again using a the key-value match:

Flow.run(”foo”, null, {”s1”: ”v2”});

The key-valuematcher will also create the session if it does not exist - this will not happen using the
predicate approach.

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.3 Wait

3.3.1 Wait for seconds

Wait the given amount of seconds.

Parameters

• timeout the number of seconds to wait

Example

Wait.forSeconds(2);

Support

• ChromeDriver
• IEDriver

Sirenia 28

Flows September 23, 2020

• JavaDriver
• NativeDriver

3.3.2 Wait for milliseconds

Wait the given amount of milliseconds.

Parameters

• timeout the number of milliseconds to wait

Example

Wait.forMilliseconds(200); // Wait for 0.2 seconds

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.3.3 Wait for field

Wait for the given field to appear - will returnwhen field appear or throw an exceptionwhen the given
amount of seconds has elapsed.

Parameters

• field the field to wait for e.g. Fields[”myfield”]
• timeout the max amount of seconds to wait for the field to appear
• options additional optional arguments

– pollDelayInMs int, howmany ms between checks that the field is present or not - de-
fault is 200

Example

Sirenia 29

Flows September 23, 2020

Wait.forField(Fields[”myfield”], 10);

// Poll every 1s
Wait.forField(Fields[”myField”, 10, { pollDelayInMs: 1000 });

Support

• ChromeDriver
• JavaDriver

3.3.4 Wait for field to disappear

Wait for the given field to disappear - will return when field disappears or throw an exception when
the given amount of seconds has elapsed.

Parameters

• field the field to wait for e.g. Fields[”myfield”]
• timeout the max amount of seconds to wait for the field to disappear

Wait.forFieldToDisappear(Fields[”myfield”], 10);

Support

• ChromeDriver
• JavaDriver

3.3.5 Wait for window

Wait for the given window to appear - will return when a matching window appears or throw an ex-
ception when the given amount of seconds has elapsed. There is also a forWindowToDisappear
variant.

Parameters

• title the title of the window to wait for
• timeout the max amount of seconds to wait for the field to appear

Sirenia 30

Flows September 23, 2020

Example

// Wait for a window with Notepad in its title to appear, max 10s
Wait.forWindow(”Notepad”, 10);
// Wait for Notepad to disappear again
Wait.forWindowToDisappear(”Notepad”, 10);

3.3.6 Wait for lock

Wait.forLock(...) allows for exclusiveaccess toa shared resourceamongconcurrently running
flows (from separate sessions) or from other asynchronous tasks (e.g. when using the Taskmodule).

Parameters

• lockName The name of the lock
• callback The function to call with exclusivity under the named lock
• opts Options (default: { timeout: 3000 })

Return value

true if the lock was obtained within the timeout. false otherwise

Example

To access a shared resource with exclusivity:

function accessSharedResourceFn() {
// Access the shared resource here...

}

if (!Wait.forLock(’resourceLock’, accessSharedResourceFn, { timeout: 5000 })) {
throw Error(’Failed to access the shared resource’);

}

3.3.7 Wait for click

Wait.forClick(...) andWait.forRightClick(...) canbeused towait for auser to click
a given field.

Sirenia 31

Flows September 23, 2020

Parameters

• field an instance of a Field to wait for click on
• options an object containing optional arguments;

– throwsbool, if true then an exception is thrown if the fieldwas not clicked beforetim-
out has elapsed - default is true

– timeout int, for howmanyms should we wait before giving up - default is 60000

Return value

If option.throw is false then true is returned if the field was clicked, false otherwise.

Example

// Simple wait - will throw error if ”OK” is not clicked within 60s
Wait.forClick(Fields[”OK”]);

// Do not throw an error and wait only 5s
if (!Wait.forRightClick(Fields[”Cancel”], { ”throws”: false, ”timeout”: 5000 })) {
// No click

} else {
// ”Cancel” was clicked

}

3.3.8 Wait for predicate

Wait.for(...) can be used towait for an arbitrary condition to bemet. Use this for any condition
that isn’t directly supported by other methods in the Wait api.

Parameters

• predicate a function returning a truthy value when the awaited condition is met and falsy
values otherwise.

• options an optional object containing arguments;
– throws bool, if true then an exception is thrown if the predicate has not returned a
truthy value before timout has elapsed - default is true

– timeout the number of ms we wait before giving up - default is 10000
– interval the number of ms to pause between each invocation of the predicate. Default
is 200

Sirenia 32

Flows September 23, 2020

Return value

The first truthy value returned by the predicate is returned or null if no such value was produced.
If the throw option is true (default) and no truthy value is produced by the predicate, an exception is
thrown in stead.

Example

function predicate() {
return new Field(’**/combobox’).read();

}
// Wait 3 seconds for field to get a value - no timeout exception
var maybeValue = Wait.for(predicate, { throws: false, timeout: 3000 });
if (!maybeValue) {
// Handle timeout

}
// Wait 10 seconds with exception on timeout
try {
Wait.for(predicate);

} catch (e) {
// Handle the timeout

}

3.4 Xml

The Xml module enables parsing information stored in local or remote xml files.

3.4.1 Load xml

Parse the given string as xml and return an XmlDoc object which can be queried or turned into JSON.

Parameters

• xml an xml formatted string to parse

Sirenia 33

Flows September 23, 2020

Example

var d = Xml.load(”<hello>world</hello>”);

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.4.2 Load XML from url

Fetch a local or a remote file and parse as xml. Returns an XmlDoc object.

Parameters

• url is a local or remote path to an xml file

Example

// A remote file
var remote = Xml.loadFrom(”http://somewhere/over/the/rainbow.xml”);
// A local file
var local = Xml.loadFrom(”c:\\somewhere\over\the\rainbow.xml”);

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.5 XmlDoc

An XmlDoc is an object that wraps an xml document and which has a few functions for querying the
underlying document.

Sirenia 34

Flows September 23, 2020

3.5.1 XPath

Execute an XPath query and return the results. The result is a list of objects, each object represents
the matching xml node.

Parameters

• xpath a well-formed XPath expression

Example

var doc = Xml.load(”<hello>world</hello>”);
var allHellos = doc.xpath(”//hello”);

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.5.2 JSON

Returns a JSON/JavaScript version of the document which can then be inspected in the flow.

Example

var doc = Xml.load(”<hello>world</hello>”);
var docObject = doc.json();

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

Sirenia 35

https://en.wikipedia.org/wiki/XPath
https://en.wikipedia.org/wiki/XPath

Flows September 23, 2020

3.6 HTTP

The Http module enables http requests to be sent within a flow.

3.6.1 GET

Send a HTTP GET request. Returns a reply object containing;

• status the http status-code
• data a string containing the data received
• headers an object containing the headers received

Parameters

• url the url to GET
• opts options, an object which may contain the following properties:

– credentials (optional) for basic-auth - an object containing;
– user username for the http resource
– pass password for the http resource
– headers (optional) an object defining additional headers to include in the request
– useragent (optional) a string overriding the default useragent
– timeout (optional, default 60000) howmanyms to wait for the request to complete
– contenttype (optional) the contenttype of the request

Example

// Anonymous
var reply = Http.get(”http://somewhere/over/the/rainbow.txt”, {});
if (reply.status == 200) { // Status: OK
...

}
// With basic-auth user/pass
Http.get(”http://somewhere/over/the/rainbow.txt”, { ’credentials’: {’username’: ’John’, ’password’: ’ramb0’ } });

Support

• ChromeDriver
• IEDriver
• JavaDriver

Sirenia 36

Flows September 23, 2020

• NativeDriver

3.6.2 POST

Send a HTTP POST request. Returns a reply object containing;

• status the http status-code
• data a string containing the data received

Parameters

• url the url to POST to
• data a string to POST
• opts options, an object containing additation options for the request (see description in
Http.get)

Example

// Anonymous
var reply = Http.post(”http://somewhere/over/the/rainbow.txt”, ”data=123”, {});
if (reply.status == 200) { // Status: OK
...

}

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.6.3 PUT

Send a HTTP PUT request. Returns a reply object containing;

• status the http status-code
• data a string containing the data received

Sirenia 37

Flows September 23, 2020

Parameters

• url the url to PUT to
• data a string to PUT
• opts options, an object containing additation options for the request (see description in
Http.get)

Example

// Anonymous
var reply = Http.put(”http://somewhere/over/the/rainbow.txt”, ”data=123” {});
if (reply.status == 200) { // Status: OK
...

}

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.6.4 DELETE

Send a HTTP DELETE request. Returns a reply object containing;

• status the http status-code
• data a string containing the data received

Parameters

• url the url to DELETE
• opts options, an object containing additation options for the request (see description in
Http.get)

Example

// Anonymous
var reply = Http.delete(”http://somewhere/over/the/rainbow.txt”, {});

Sirenia 38

Flows September 23, 2020

if (reply.status == 200) { // Status: OK
...

}

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.7 FTP

The Ftp module enables reading and writing files on ftp servers.

3.7.1 Read

Read a file.

Parameters

• url the url to the file to read
• opts options, an object which may contain the following properties:

– user username for the ftp server, blank if anonymous access is allowed
– pass password for the ftp server

Example

// Anonymous
var data = Ftp.read(”ftp://somewhere/over/the/rainbow.txt”, {});
// With user/pass
var data = Ftp.read(”ftp://somewhere/over/the/rainbow.txt”, { ’user’: ’John’, ’pass’: ’ramb0’ });

Support

• ChromeDriver

Sirenia 39

Flows September 23, 2020

• IEDriver
• JavaDriver
• NativeDriver

3.7.2 Write

Write a file to a remote ftp server.

Parameters

• url the url to the file to write
• data the content of the file
• opts options, an object which may contain the following properties:

– user username for the ftp server, blank if anonymous access is allowed
– pass password for the ftp server

Example

Ftp.write(”ftp://somewhere/over/the/rainbow.txt”, ”red, green, blue”, {});

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.8 Db

The Dbmodule has functionality for connecting to databases. It currently supports sqlite, mssql,
msaccess, oracle and postgresql databases.

3.8.1 Connect

The connectmethod initialises a connection to a given database and returns a Database object.

Sirenia 40

Flows September 23, 2020

Parameters

• type the type of the database, currently this should be ”mssql”, ”sqlite”, ”msaccess”, ”oracle”
or ”postgresql”.

• connection the connection-string which contains information about how to connect to the
database in question

Example

var db = Db.connect(’sqlite’, ’Data Source=C:\\MyFolder\\Test.db;Version=3;’);

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.8.2 Database

The database object returned from a Db.connect(...) invocation represents a database connec-
tion. It has two primary methods for interacting with a database; query and exec.

Exec

The exec method will execute a non-query (e.g. INSERT, UPDATE) and return the number of af-
fected rows.

Example

var affectedRows = db.exec(’CREATE TABLE Test (id int, name string)’);

Also supports db parameters:

Db.exec(
”INSERT INTO Mammals (name, species) VALUES (@name, @species)”,
{ ”@name”: ”John”, ”@species”: ”Seacow” }

);

The arguments in the 2nd argumentmust be prefixed with ”@”.

Sirenia 41

Flows September 23, 2020

Query

Thequerymethod is used for queries (e.g. SELECT etc) and returns an array of objects representing
the result of the query.

Example

var rows = db.query(’SELECT id, name from Test’);
for (var i=0; i<rows.length; i++) {
Debug.showDialog(”id=”+row.id+”, name=”+row.name);

}

Begin

The begin()method is used to initiate a transaction.

Example

var tx = db.begin();

3.8.3 Transaction

A transaction object is conceptually similar to the database object. It has the same query and
execmethods, butwill delay the executionof thequery or commanduntilcommit() is invokedand
of course maintains transactional integrity. If the rollback()method is invoked the query and
exec operations already made are discarded.

Commit

A commit() invocation will commit the tx to the db.

Example

tx.exec(”INSERT INTO Test (id, name) VALUES (1, ’John’)”);
tx.exec(”INSERT INTO Test (id, name) VALUES (2, ’Jane’)”);
// Commit John and Jane
tx.commit();

Sirenia 42

Flows September 23, 2020

Rollback

A rollback() invocation will rollback the tx.

Example

tx.exec(”INSERT INTO Test (id, name) VALUES (1, ’John’)”);
tx.exec(”INSERT INTO Test (id, name) VALUES (2, ’Jane’)”);
// John and Jane are not needed anyways
tx.rollback();

3.8.4 Database

The database object returned from a Db.connect(...) invocation represents a database connec-
tion. It has two primary methods for interacting with a database; query and exec.

Exec

The exec method will execute a non-query (e.g. INSERT, UPDATE) and return the number of af-
fected rows.

Example

var affectedRows = db.exec(’CREATE TABLE Test (id int, name string)’);

3.9 Csv

The Csvmodule can be used for parsing, manipulating and generating comma-separated files.

3.9.1 Parse

Theparsemethod takes a csv formatted string and returns an array of objects or arrays - one for each
row in the string. There is also a parseFile variant which is identical to the parsemethod except
that it takes a filename as its first argument.

Sirenia 43

Flows September 23, 2020

Parameters

• content the csv string
• options provides the options for the parser

The options object can have the following fields:

• delimeters a list strings used to separate the columnsof the content - default is[’,’,’;’]
• header can be set to
• true to indicate that a header is present in the first line of the content or you can set it to an
• array of strings to provide the header manually (the first line is treated as normal data) or you
can

• leave it or or set it to null (the default) which will cause the parsed result to be an array of
arrays instead of an array of objects

• quotedFields which will strip quotes from the data (if present in the content) - default
false

Examples

var csv = Csv.parse(’foo;bar\n100;200’, {header: true})

The csv variable will now contain:

[
{ foo: 100, bar: 200 }

]

or if there is no header:

var csv = Csv.parse(’100;200\n300;400’, {})

The csv variable will now contain:

[
[100, 200],
[300, 400]

]

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

Sirenia 44

Flows September 23, 2020

3.9.2 Stringify

Thestringify(arr, quoteStrings, delim)methodwill take anarrayof objects or anarray
of arrays generate a csv string.

Parameters

• arr the array to convert to a csv string
• quoteStrings a boolean value indicating whether to add quotes to strings or not (default
false)

• delim the delimeter string to separate fields (default ’,’)

Example

var arr1 = [[’foo’,’bar’],[1,2]];
var arr2 = [{foo: 3, bar: 4}];
var csvStr1 = Csv.stringify(arr1);
var csvStr2 = Csv.stringify(arr2);

csvStr1 and csvStr2will now both have the value foo,bar\n1,2.

3.10 Excel

3.10.1 Load

Load and parse and Excel spreadsheet. It can either return the entire spreadsheet or a selected range
of cells. If the header option is set then the returned value will be be a map/object with the column
names as keys - otherwise an array is used. If index is set then then values in the index column will
be used as keys - otherwise an array is used. If both are set then both dimensions will use values as
keys. See the examples below.

Parameters

• file path for an Excel spreadsheet to load
• options options for parsing the spreadsheet - use {} to return the entire spreadsheet
• table define a table to return

– rangewhich range does the table reside in e.g. ’A1:D20’
– header is a boolean to determine if the top row of the header is a table

Sirenia 45

Flows September 23, 2020

– index is a boolean to determine if the initial column is an index column
– worksheet is the name of the sheet to load data from

Example with simple table

Given the following simple spreadsheet in the worksheet named ’Sheet1’:

cell 1 cell 2

cell 3 cell 4

The following code will load the spreadsheet and pick out the value stored at cell1.

var table = Excel.load(’myspreadsheet.xlsx’, {});
var cell1 = table[”Sheet1”][0][0];

Example with table with header defined by range

Given the table below, situated in worksheet ”Sheet1” at A1:B3:

header 1 header 2

cell 1 cell 2

cell 3 cell 4

Use the following code to pick out cell4.

var table = Excel.load(’myspreadsheet.xlsx’, { table: { range: ’A1:B3’, worksheet: ’Sheet1’, header: true } });
var cell4 = table[2][’header 2’]; // 3rd row (0 is first row), column with header ’header 2’

Example with both header and index

Given the table below, situated in worksheet ”Sheet1” at A1:B3:

header 1 header 2

I1 cell 1 cell 2

I2 cell 3 cell 4

Sirenia 46

Flows September 23, 2020

Use the following code to pick out cell2.

var table = Excel.load(’myspreadsheet.xlsx’, { table: { range: ’A1:C4’, worksheet: ’Sheet1’, header: true, index: true } });
var cell2 = table[’I1’][’header 2’];

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.10.2 Delete a sheet

Removes a single sheet from the workbook.

Parameters

• filename the path to the excel file to be updated
• sheet the name of the sheet to delete

Example

Excel.deleteSheet(’data.xlsx’, ’Sheet1’);

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.10.3 Update single cell

Update the value stored in a single cell in a spreadsheet.

Sirenia 47

Flows September 23, 2020

Parameters

• filename the path to the excel file to be updated - if the file does not exist a new one will be
created

• sheet the name of the sheet to update
• address an ”address” to a cell, e.g. ”A1”
• value the value to write into the cell

Example

// write 1000 into A3 of Sheet1 in data.xlsx
Excel.updateCell(’data.xlsx’, ’Sheet1’, ’A3’, 1000);

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.10.4 Updatemultiple cells

Update values stored in a spreadsheet. This method is a lot more performant than the single cell
version if you need to store multiple values.

Parameters

• filename the path to the excel file to be updated - if the file does not exist a new one will be
created

• sheet the name of the sheet to update
• address an ”address” of the starting cell
• values the valued to write into the cells - this should be a 2 dimensional array (like a table)

Example

// The data to write
var data = [
[10, 20, 30],
[40, 50, 60]

Sirenia 48

Flows September 23, 2020

];
// write data into data.xlsx, Sheet1 starting at A1
Excel.updateCells(’data.xlsx’, ’Sheet1’, ’A1’, data);

This will result in a table that looks like:

A B C

1 10 20 30

2 40 50 60

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.10.5 Deleting rows and columns from a sheet

You can delete a single, multple or a range of rows from a sheet with the deleteRowsmethod.

// Delete a *single* row - row 100
Excel.deleteRows(’data.xlsx’, ’Sheet1’, 100);
// Delete *multiple* rows, rows 100, 150 and 155
Excel.deleteRows(’data.xlsx’, ’Sheet1’, [100, 150, 155]);
// Detele a range of rows, rows from 100 to 150
Excel.deleteRows(’data.xlsx’, ’Sheet1’, { from: 100, to: 150 });

Deleting columns is done with the deleteColumnsmethod with the same semantics as above.

3.11 Settings

The Settings object contains values that can be read/written to affect the behaviour of a flow. The
following properties are available:

• CommandRetries (int - read+write) defines the number of times a command is retried before
it is considered to fail. Default is 3.

Sirenia 49

Flows September 23, 2020

• CommandRetryDelays (Array - read+write) defines the delays inmilliseconds between each
retry. Default is [100, 200, 400, 800, 1600]. When the number of retries exceed the
given delays the last value in this array is used for all overflowing retries.

3.11.1 Example writing a value

Settings.CommandRetryDelays = [100, 100, 100];

3.11.2 Example reading a value

var retries = Settings.CommandRetries;
Debug.showDialog(”Retries: ” + retries);

3.11.3 Settings.Manatee

The Settings.Manatee object gives read/write access to the settings that govern Manatee itself.
The full list of available settings can be seen in the Manatee settings dialog. Settings can be updated
one at the time or multiple values in one go.

Note that for most changes to take effect, Manatee must be restarted.

3.11.4 Example writing values

// Set just one setting
Settings.Manatee.set(’ProductionGroup’, ’MyOwnGroup’);

// Set multiple settings
Settings.Manatee.set({
productionGroup: ’MyOwnGroup’,
mode: ’FullAuto’

});
Manatee.restart();

Sirenia 50

Flows September 23, 2020

3.11.5 Example reading a value

var prodGroup = Settings.Manatee.productionGroup;
Debug.showDialog(”Production group: ” + prodGroup);

3.12 Log

3.12.1 Stats from running flow

It is possible to have extra stats logged from a running flow - these itemswill get loggedwhen the flow
finishes along with timing and other info.

// Log ”foo” and ”bar” values
Log.flowStats = {
foo: 1200,
bar: ”abc”

};
// or
Log.flowStats.qux = true;

3.12.2 Warn

Inserts a warning in the log.

Parameters

• key the key of the message - keep this as a constant
• text the text to insert

Example

Log.warn(’greeting’,’hello there’);

Support

• ChromeDriver

Sirenia 51

Flows September 23, 2020

• IEDriver
• JavaDriver
• NativeDriver

3.12.3 Info

Inserts a informational line in the log.

Parameters

• key the key of the message - keep this as a constant
• text the text to insert

Example

Log.info(’greeting’,’hello there’);

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.12.4 Set log level

Controls the log verbosity of the application driver.

Parameters

• level the new log level. Must be one of the following: none, fatal, error, warn, info, debug.
• options optional additional options

– useStdOut (defaults to false) boolean value indicating if instrumentation log should go
to the application stdout or to manatee log.

Example

Sirenia 52

Flows September 23, 2020

Log.setDriverLogging(’info’, { useStdOut: true });

Support

• ChromeDriver
• JavaDriver

3.13 HID

The HID modules deals with human-input devices (e.g. mouse and keyboard) and allows us to simu-
late a low-level input fromwithin a flow.

3.13.1 Block input

You can block the user fromproviding input viamouse and keyboard for a specified time interval. The
user will always be able to abort the block by pressing ctrl+alt+del.

Parameters

• timeout for how long should the user be blocked (in ms)

Example

// Block input for max 2 seconds
var unblock = HID.blockInput(2000);
// Unblock manually after 1s
Wait.forSeconds(1);
unblock();

A notification showing that input is blocked will be displayed as long as the block lasts.

3.14 HID.Mouse

The Mousemodule can be accessed using HID.mouse or simply Mouse.

Sirenia 53

Flows September 23, 2020

3.14.1 Move cursor relative

Move the mouse cursor relative to its current position.

Parameters

• dx the relative pixels to move vertically (positive to move right on the screen)
• dy the relative pixels to move horizontally (positive to move down on the screen)

Example

// Nudge the cursor 10px to the right and 10 down
HID.mouse.moveBy(10,10);

// All mouse functions are chainable meaning you can move, then click.
Mouse.moveBy(10,10).click();

3.14.2 Move to an absolute position

Move the cursor to a specified position on the screen.

Parameters

• x the absolute vertical position to move the cursor to
• y the absolute horizontal position to move the cursor to

Example

// Move to (10,10)
HID.mouse.moveTo(10,10);

3.14.3 Move to a Field

Move the cursor to the middle of the specified field.

HID.mouse.moveToField(Fields.MyButton);

Sirenia 54

Flows September 23, 2020

3.14.4 Hold amouse button down

The commandwill depress the givenmouse button until the flow finishes or the Mouse.up function
(with the same button as argument) is called.

Parameters

• button thebutton toholddown (optionsareMouse.LEFTBUTTON,Mouse.RIGHTBUTTON
or Mouse.MIDDLEBUTTON). If no argument is given the Mouse.LEFTBUTTON is assumed.

Example

Mouse.down(Mouse.MIDDLEBUTTON);

3.14.5 Release a held downmouse button

The command will release the givenmouse button.

Parameters

• button thebutton toholddown (optionsareMouse.LEFTBUTTON,Mouse.RIGHTBUTTON
or Mouse.MIDDLEBUTTON). If no argument is given the Mouse.LEFTBUTTON is assumed.

Example

Mouse.up();

3.14.6 Click with amouse button

This command will click (depress, then release) with the given button button.

Parameters

• button thebutton toholddown (optionsareMouse.LEFTBUTTON,Mouse.RIGHTBUTTON
or Mouse.MIDDLEBUTTON). If no argument is given the Mouse.LEFTBUTTON is assumed.

• doubleClick a boolean indicating whether the click should be a double-click or not. Default
is false.

Sirenia 55

Flows September 23, 2020

Example

Mouse.click(Mouse.RIGHTBUTTON);

// Double-click with left button
Mouse.click(Mouse.LEFTBUTTON, true);

3.15 HID.Keyboard

The Keyboard module contains methods for simulating keyboard key presses. It also contains an al-
ternative to Window.sendKeyswhich adds ScanCodes to inputs which some applications prefer
(Citrix etc).

TheWindow.sendKeysmethod has also beenmodified to be able to invoke theKeyboard.send
method. This is done as follows by setting the useHID flag:

Window.sendKeys(”{TAB}”, { useHID: true });

The keys used in most of the keyboard methods are available on the Keyboardmodule itself. The
full list is also given here:

Keyboard.LBUTTON;
Keyboard.RBUTTON;
Keyboard.CANCEL;
Keyboard.MBUTTON;
Keyboard.XBUTTON1;
Keyboard.XBUTTON2;
Keyboard.BACK;
Keyboard.TAB;
Keyboard.CLEAR;
Keyboard.RETURN;
Keyboard.SHIFT;
Keyboard.CONTROL;
Keyboard.MENU;
Keyboard.PAUSE;
Keyboard.CAPITAL;
Keyboard.HANGEUL;
Keyboard.HANGUL;
Keyboard.KANA;

Sirenia 56

Flows September 23, 2020

Keyboard.JUNJA;
Keyboard.FINAL;
Keyboard.HANJA;
Keyboard.KANJI;
Keyboard.ESCAPE;
Keyboard.CONVERT;
Keyboard.NONCONVERT;
Keyboard.ACCEPT;
Keyboard.MODECHANGE;
Keyboard.SPACE;
Keyboard.PRIOR;
Keyboard.NEXT;
Keyboard.END;
Keyboard.HOME;
Keyboard.LEFT;
Keyboard.UP;
Keyboard.RIGHT;
Keyboard.DOWN;
Keyboard.SELECT;
Keyboard.PRINT;
Keyboard.EXECUTE;
Keyboard.SNAPSHOT;
Keyboard.INSERT;
Keyboard.DELETE;
Keyboard.HELP;
Keyboard.VK_0;
Keyboard.VK_1;
Keyboard.VK_2;
Keyboard.VK_3;
Keyboard.VK_4;
Keyboard.VK_5;
Keyboard.VK_6;
Keyboard.VK_7;
Keyboard.VK_8;
Keyboard.VK_9;
Keyboard.VK_A;
Keyboard.VK_B;

Sirenia 57

Flows September 23, 2020

Keyboard.VK_C;
Keyboard.VK_D;
Keyboard.VK_E;
Keyboard.VK_F;
Keyboard.VK_G;
Keyboard.VK_H;
Keyboard.VK_I;
Keyboard.VK_J;
Keyboard.VK_K;
Keyboard.VK_L;
Keyboard.VK_M;
Keyboard.VK_N;
Keyboard.VK_O;
Keyboard.VK_P;
Keyboard.VK_Q;
Keyboard.VK_R;
Keyboard.VK_S;
Keyboard.VK_T;
Keyboard.VK_U;
Keyboard.VK_V;
Keyboard.VK_W;
Keyboard.VK_X;
Keyboard.VK_Y;
Keyboard.VK_Z;
Keyboard.LWIN;
Keyboard.RWIN;
Keyboard.APPS;
Keyboard.SLEEP;
Keyboard.NUMPAD0;
Keyboard.NUMPAD1;
Keyboard.NUMPAD2;
Keyboard.NUMPAD3;
Keyboard.NUMPAD4;
Keyboard.NUMPAD5;
Keyboard.NUMPAD6;
Keyboard.NUMPAD7;
Keyboard.NUMPAD8;

Sirenia 58

Flows September 23, 2020

Keyboard.NUMPAD9;
Keyboard.MULTIPLY;
Keyboard.ADD;
Keyboard.SEPARATOR;
Keyboard.SUBTRACT;
Keyboard.DECIMAL;
Keyboard.DIVIDE;
Keyboard.F1;
Keyboard.F2;
Keyboard.F3;
Keyboard.F4;
Keyboard.F5;
Keyboard.F6;
Keyboard.F7;
Keyboard.F8;
Keyboard.F9;
Keyboard.F10;
Keyboard.F11;
Keyboard.F12;
Keyboard.F13;
Keyboard.F14;
Keyboard.F15;
Keyboard.F16;
Keyboard.F17;
Keyboard.F18;
Keyboard.F19;
Keyboard.F20;
Keyboard.F21;
Keyboard.F22;
Keyboard.F23;
Keyboard.F24;
Keyboard.NUMLOCK;
Keyboard.SCROLL;
Keyboard.LSHIFT;
Keyboard.RSHIFT;
Keyboard.LCONTROL;
Keyboard.RCONTROL;

Sirenia 59

Flows September 23, 2020

Keyboard.LMENU;
Keyboard.RMENU;
Keyboard.BROWSER_BACK;
Keyboard.BROWSER_FORWARD;
Keyboard.BROWSER_REFRESH;
Keyboard.BROWSER_STOP;
Keyboard.BROWSER_SEARCH;
Keyboard.BROWSER_FAVORITES;
Keyboard.BROWSER_HOME;
Keyboard.VOLUME_MUTE;
Keyboard.VOLUME_DOWN;
Keyboard.VOLUME_UP;
Keyboard.MEDIA_NEXT_TRACK;
Keyboard.MEDIA_PREV_TRACK;
Keyboard.MEDIA_STOP;
Keyboard.MEDIA_PLAY_PAUSE;
Keyboard.LAUNCH_MAIL;
Keyboard.LAUNCH_MEDIA_SELECT;
Keyboard.LAUNCH_APP1;
Keyboard.LAUNCH_APP2;
Keyboard.OEM_1;
Keyboard.OEM_PLUS;
Keyboard.OEM_COMMA;
Keyboard.OEM_MINUS;
Keyboard.OEM_PERIOD;
Keyboard.OEM_2;
Keyboard.OEM_3;
Keyboard.OEM_4;
Keyboard.OEM_5;
Keyboard.OEM_6;
Keyboard.OEM_7;
Keyboard.OEM_8;
Keyboard.OEM_102;
Keyboard.PROCESSKEY;
Keyboard.PACKET;
Keyboard.ATTN;
Keyboard.CRSEL;

Sirenia 60

Flows September 23, 2020

Keyboard.EXSEL;
Keyboard.EREOF;
Keyboard.PLAY;
Keyboard.ZOOM;
Keyboard.NONAME;
Keyboard.PA1;
Keyboard.OEM_CLEAR;

All the keyboard methods are chainable - meaning you can do:

Keyboard.down(Keyboard.SHIFT).press(”f”).up(Keyboard.SHIFT);

which will give you an ”F”.

3.15.1 Key down

Simulates pressing a key and holding it down (until up is called for the same key).

Keyboard.down(Keyboard.SHIFT);
// or using a case insensitive string
Keyboard.down(”shift”);

Remember to follow this with an Keyboard.up(key);.

3.15.2 Key up

Simulates releasing a key.

Keyboard.up(Keyboard.SHIFT);

3.15.3 Key press

Simulates a down followed by an up ie a key press.

Keyboard.press(Keyboard.VK_M);

3.15.4 Input

Input is used for pure text input (ie no special- or modifier keys in the string you need to input).

Sirenia 61

Flows September 23, 2020

Keyboard.input(”Hello, world!”);

3.15.5 Send

Thesendmethod is used to shipmore complex key-sequences to an application. It uses the same for-
matasWindow.sendKeys (seehttps://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.sendkeys.send?redirectedfrom=MSDN&view=netframework-
4.8).

// Send 2 TAB keys followed by ’f’, ’o’, ’o’ and then ‘ctrl+a‘ to select all.
Keyboard.send(”{TAB 2}foo^a”);

An optional 2nd argument with options can be given. Currently supported is a wait option to define
how long to wait between sending keystrokes.

// Wait 2s between keystrokes
Keyboard.send(”abc”, { wait: 2000 });

3.16 Window

The Window module has functionality for dealing primarily with the main window of an application.
In contrast the Windowsmodule supports interacting with all the windows on the desktop.

3.16.1 Title

Get the title of the main window. Optionally supply a timeout for the operation - default timeout is
500ms normally.

Example

var title = Window.title();
// or with a timeout of 2s
title = Window.title(2000);

Support

• ChromeDriver
• IEDriver

Sirenia 62

Flows September 23, 2020

• JavaDriver
• NativeDriver

3.16.2 Minimize

Minimize the main window.

Example

Window.minimize();

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.16.3 Is minimized

Check if the main window is minimized.

Example

if(Window.isMinimized()) {
...

}

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.16.4 Maximize

Maximize the main window.

Sirenia 63

Flows September 23, 2020

Example

Window.maximize();

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.16.5 Is maximized

Check if the main window is maximized.

Example

if(Window.isMaximized()) {
...

}

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.16.6 Focus

Put focus on the main window.

Parameters

• options optional object with options for focus. Supported options:
– useCachedUI boolean indicating if UI component lookup should use the UI itself or the
underlying model. Defaults to false (underlying model traversal).

– askForPermission whether or not the user is asked for permission if Manatee is not
allowed to focus (default is true)

Sirenia 64

Flows September 23, 2020

Example

Window.focus();
// or do not ask for permission (then no focus is done if Manatee cannot focus)
Window.focus({ askForPermission: false });

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.16.7 Send keys

Send keyboard events (simulated typing) to a window. Supports special strings for sending special
keys.

Parameters

• keys the keys to send - this is a string
• options optional object with options for sendkeys, supported options:

– focus [bool] whether to focus the window prior to sending the keys

Example

Window.sendKeys(”foo bar”);
// or to focus the window prior to sending the keys
Window.sendKeys(”foo bar”, { focus: true });

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

Sirenia 65

https://msdn.microsoft.com/en-us/library/system.windows.forms.sendkeys.send(v=vs.110)

Flows September 23, 2020

3.16.8 Restore

Restore the main window to a previous state and location.

Example

Window.restore();

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.16.9 Windowwithmodal dialog shown

Get whether or not a modal (dialog) is shown.

Example

var modalIsShown = Window.modalShown();

Support

• JavaDriver

3.16.10 Shownwith title

Get whether or not a windowwith the given title is shown.

Example

var windowIsShown = Window.withTitleShown(”My Window”);

Support

• JavaDriver

Sirenia 66

Flows September 23, 2020

3.16.11 Dim

Dims the window owned by the flow.

Parameters

• level the amount of dimming, 0-255. 255 is opaque and 0 is transparent.

Example

Window.dim(100)

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.17 Windows

The Windowsmodule has functionality to inspect andmanipulate the Windows of the desktop.

3.17.1 All windows

The all() method will return an array of window proxy objects representing all windows on the
desktop.

Example

var allWindows = Windows.all();

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

Sirenia 67

Flows September 23, 2020

3.17.2 Windows for current application

TheforApp()method returns an array of windowproxy objects representing all thewindows of the
application.

Example

var applicationWindows = Windows.forApp();

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.17.3 Primary window

The primary property returns a single window proxy object representing the primary or main win-
dow of the application.

Example

var pw = Windows.primary;

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.17.4 Frontmost/focused window

Get the frontmost or focused windowwith this command.

Sirenia 68

Flows September 23, 2020

Example

var w = Windows.focused;
// and the same can be done via
w = Windows.frontMost;

3.17.5 Window Proxy

The window proxy object returned by the Windowsmodule methods represents a desktop window
and can bemanipulated with the following methods and properties.

Close

Close the window.

Windows.primary.close()

Move

Move the window to the given x,y coordinates.

var pw = Windows.primary;
// Move the window to (100,100) from the topmost left corner of the screen.
pw.move(100, 100);

Resize

Resize the window to the given dimensions.

var pw = Windows.primary;
pw.resize(100, 100);

Focus

Make the window the focused (topmost) window.

var pw = Windows.primary;
pw.focus();

Sirenia 69

Flows September 23, 2020

Maximize

Maximize the window.

var pw = Windows.primary;
pw.maximize();

Minimize

Minimize the window.

var pw = Windows.primary;
pw.minimize();

Restore

Restore the original state of the window (after having maximized or minimized it).

var pw = Windows.primary;
pw.restore();

Screenshot

Grab a screenshot of the window. The screenshot will be returned as a base64 encoded string.

var pw = Windows.primary;
// img is a base64 encoded string
var img = pw.screenshot();

SendKeys

Send keyboard strokes to the window.

var pw = Windows.primary;
pw.sendKeys(”abc”);

Title

Get the title of the window.

var pw = Windows.primary;
var t = pw.title;

Sirenia 70

Flows September 23, 2020

Class

Get the class of the window.

var pw = Windows.primary;
var t = pw.class;

IsPrimary

Get/set whether this window is considered the primary for the application.

var ws = Windows.forApp();
if (!ws[0].isPrimary) {
ws[0].isPrimary = true;

}

IsMaximized

Get a boolean value indicating whether or not the window is maximized.

var ws = Windows.forApp();
if (!ws[0].isMaximized) {
// do something then

}

IsMinimized

Get a boolean value indicating whether or not the window is minimized.

var ws = Windows.forApp();
if (!ws[0].isMinimized) {
// do something then

}

Bounds

Get/set the bounds (location and size) of the window.

“‘javascript var pw =Windows.primary; var bounds = pw.bounds;

// Move 10px left and downbounds.x = bounds.x + 10; bounds.y = bounds.y + 10; // Decreasewidth and
height with 10px bounds.width = bounds.width - 10; bounds.height = bounds.height - 10;

// Update the window bounds with the new values pw.bounds = bounds;

Sirenia 71

Flows September 23, 2020

Process for window

window.process;
// is a ProcessProxy object

3.18 Processes

The Processes module similarly to the windows module is used to enumerate and manipulate pro-
cesses running on the local machine.

3.18.1 All processes

The all() methods enumerates all processes on the local machine. It returns an array of process
proxy objects.

var ps = Processes.all();
for (var i=0; i<ps.length; i++) {
// then do something with each process proxy

}

3.18.2 Current

Get the current process for the application (for which the flow is defined).

var p = Processes.current;
Debug.showDialog(p.name);

3.18.3 Spawning new processes

The spawn(...) method can be used to create new processes. It takes 3 arguments;

• path to the executable to launch
• arguments for the executable (optional - default null)
• working directory (optional - default null)
• shell (boolean)whether to launch the process in a shell environment - thismust be set to true
for url-handlers to activate (optional - default false)

Sirenia 72

Flows September 23, 2020

It returns a process proxy object fronting the process spawned.

var p = Processes.spawn(”C:\\Path\\To\Executable.exe”);
Debug.showDialog(p.name);

3.18.4 Process proxy

Kill

Kills a process.

var p = Processes.all()[0];
p.kill();

or with more violence:

p.kill({ force: true });

which will use taskkill to kill the process.

Wait for a process to exit

The wait(...) method will wait for the given process to exit. It takes an integer, the maximum
numberofmilliseconds towait for theprocessas its argument. It returnsaboolean indicatingwhether
the processes exited (true) or the given timespan elapses (false).

// Wait max 1s for the first process to exit
if (Processes.all()[0].wait(1000)) {
// it exited

} else {
// 1s elapsed

}

Send input (via standard-in)

Sending some input to a running process is achieved with the stdin(...) method.

This cannormallyonlybedone forprocesses spawnedbyyourself via theProcesses.spawn(...)](#spawning-
new-processes) method.

var p = Processes.spawn(...);
p.stdin(”hello”);

Sirenia 73

Flows September 23, 2020

Read from process output (standard-out)

Reading from the output of a process is done via the stdout(...) method. It takes an int - the
number of lines to read - and returns a task which completes with the lines read as an array of strings
once the given number of lines has been read.

This cannormallyonlybedone forprocesses spawnedbyyourself via theProcesses.spawn(...)](#spawning-
new-processes) method.

var p = Processes.spawn(...);
var lines = null;
// Read 3 lines, then kill the process
p.stdout(3).then(function(threelines) {
lines = threelines;
p.kill();

});
p.wait(20000);
Debug.ger(lines);

It is also possible to read from standard-error output - simply use thestderr(...) method instead
of stdout(...).

An alternative approach to reading from stdout when you dont know how many lines you need to
read upfront is to use processStdout and processStderr.

var lines = [];
// p is a ProcessProxy
// Here we’ll process 100 lines but the termination condition could be anything
p.processStdout(
function(line) {
// do something with the given line
lines.push(line);
// if you return true the processing will continue - false it will stop
return lines.length < 100;

},
// Deadline is 10s
10000

);
for (var i=0; i<lines.length; i++) {
Log.info(”Line #”+i+”:”+line[i]);

}

Sirenia 74

Flows September 23, 2020

Process Id

Get the id of the process.

var pid = Processes.current.id;

Process name

Get the name of the process.

var pname = Processes.current.name;

Process path

Get the path of the executable for the process.

var path = Processes.current.path;

Process working directory

Get the working directory of the executable for the process.

var pwd = Processes.current.wd;

Process mem usage

Get the virtual or private memory (integers) usage of the process.

var virtualMem = Processes.current.vmem;
var privateMem = Processes.current.pmem;

Process exited?

Gets a boolean indicating whether the process has exited.

if (Processes.current.exited) {
// whoops

}

Process uptime

Gets the number ofmilliseconds elapsed since the processwas spawned (as longs as it has not exited).

Sirenia 75

Flows September 23, 2020

var uptime = Processes.current.uptime;

Process arguments

Get the arguments supplied to the process - can only be counted on to return valid arguments if pro-
cess was spawned by Manatee.

var args = Processes.current.arguments;

Process windows

process.mainWindow;

A list of all windows for process

process.windows;
// returns an array of WindowProxy objects

Process commandline

Get the full commandline incl arguments for the process.

process.commandLine;

Process filename

Get the full path to the filename of the executable.

process.fileName;

3.19 Debug

3.19.1 Show dialog

Show some text in a debug dialog. Essentially the same as Dialog.info(”Debug”, text).

Parameters

• text the text to display

Sirenia 76

Flows September 23, 2020

Example

Debug.showDialog(”hello there”);

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.19.2 ger

The Debug.ger() method pauses the running flow (as any other dialog) and shows a debugger
dialog which includes an inspector and a REPL (read-eval-print loop).

Inspector

The inspectorwindow lets you inspect the global values in the flowaswell as the argument given. The
variables are displayed in a tree which can be expanded to reveal the structure of the objects.

The debugger shown above was shown with the following code:

var x = { foo:’bar’, baz: 123 };
Debug.ger(x);

Expanding the CURRENT node will give you:

You can also explore the global variables (those defined in the outermost) scope of a flow. Here we
show a field.

REPL

The REPL tab of the Debug.ger can be used to try running small snippets of code in the context of
the current flow. You can do anything via the REPL that you can do in a flow.

Sirenia 77

Flows September 23, 2020

Clicking the ”Run” button will run the code written and display the time it took to run as well as the
result.

Thismethod can also be used asDebug.attach() andDebug.inspect() but someof us prefer
the simplicity and raw hipster essence of Debug.ger().

Debug dialog size

You can pass an option object as the second argument. It accepts the following properties:

• maxWidth: Allows control of the width of the debug window

var s = ’data for the variable’;
Debug.ger(s, { maxWidth: 1200 });

3.20 Fs

The Fs module is used to interact with the filesystem of the local machine.

3.20.1 System folders

Provides access to the following system folders:

• tmpfolder: A directory for temporarily storing files
• desktop: The user’s windows desktop
• appdata: The user app data folder. Applications can write user specific data here without
requiring administrator privilege

• startup: The folder which contains shortcuts to applications that should start when the user
logs in

• personal: The root user folder - eg C:\Users\<user name>

Example

var folder = Fs.tmpfolder;

Sirenia 78

Flows September 23, 2020

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.20.2 List (ls)

Returns a list of files and directories found in the directory given by the path argument. The path
may contain wildcards * in its last segment.

A second option argument can be passed, which can have the boolean property deepMatch. When
this property is set to true, files matching the filename given in the path argument in any sub-folder
will be returned.

Default behavior is to do a shallow file listing.

Return value

The resulting array can be used as a string array of the paths to the files. It can also be used as an array
of objects with detailed information about the files. Each such object has the following properties:

• folder is the folder part of the path. C:\folder\file.txt has the folder path
C:\folder.

• path is the full path of the item. Corresponds to the string value of the object.
• extension is the extension of the item. C:\folder\file.txt has the extension .txt.
• name is the name of the item. C:\folder\file.txt has the name file.txt.
C:\folder has the name folder.

• readonly boolean value indicating if the file is read only.
• size is the size of the file in bytes.
• created is the time of creation.
• modified is the time of the last modification.
• accessed is the time of the last file access.

The objects further have the following methods: - mvmoves the file or directory. Pass the new path
as an argument. - cp copies the file or directory. Pass the new path as an argument. - rm deletes the
file. - encrypt encrypts the file. - decrypt decrypts the file.

Example

Sirenia 79

Flows September 23, 2020

// Get all .txt files prefixed with somefile in somedir
var files = Fs.ls(’c:\\somedir\\somefile*.txt’);

// Get all .txt files in any sub directory under C:\somedir - at any depth
var files = Fs.ls(’c:\\somedir*.txt’, { deepMatch: true });

// Copy readonly files to a backup sub directory
var readonlyFiles = files.filter(function(file) { return file.readonly; });
_.each(readonlyFiles, function(file) { file.cp(file.folder + ’\\backup\\’ + file.name)});

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.20.3 Make a new directory

Create a new directory if it does not already exist.

Fs.mkdir(”C:\\some\\path”);

3.20.4 Move file

Move a file to a different path

Example

Fs.mv(’C:\\some\\path\\file.txt’, ’C:\\some\\other\\path\\file.txt’);

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

Sirenia 80

Flows September 23, 2020

3.20.5 Copy file

Copy a file to a different path

Example

Fs.cp(’C:\\some\\path\\file.txt’, ’C:\\some\\other\\path\\file.txt’);

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.20.6 Delete file

Delete a file

Example

Fs.rm(’C:\\some\\path\\file.txt’);

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.20.7 Check file presence

Determines if a file exists at a given path

Example

if (!Fs.exists(’C:\\some\\path\\file.txt’)) {
// Create the file

}

Sirenia 81

Flows September 23, 2020

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.20.8 Encrypt file

Activates windows file encryption for the file at the given path. Only the currently logged in user will
be able to read the file.

Example

Fs.encrypt(’C:\\some\\path\\file.txt’);

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.20.9 Decrypt file

Deactivates windows file encryption for the file at the given path. Any user will be able to read the file.

Example

Fs.decrypt(’C:\\some\\path\\file.txt’);

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

Sirenia 82

Flows September 23, 2020

3.20.10 Read

Read the contents of a file with the read(...) function.

Example

“‘javascript var html = Fs.read(’c:\somedir\somefile.html’);

Both Fs.read and Fs.writemethods can take an encoding option, like:

Fs.write(”C:/somewhere/test.txt”, ”String to write”, { encoding: ”UTF-16” });
// or for short
Fs.Fs.write(”C:/somewhere/test.txt”, ”String to write”, { encoding: Fs.UTF16 });
// and
Fs.read(”C:/somewhere/test.txt”, { encoding: ”UTF-16” });
// default if no ‘encoding‘ arg is given is UTF-8 no bom

The listof encoding (names)whichcanbeused is foundathttps://www.iana.org/assignments/character-
sets/character-sets.xhtml. Note that not all of these may be available on your machine, to see those,
run:

Debug.ger(Fs.encodings);

The following are encodings are defined on Fs;

• Fs.UTF8
• Fs.UTF16
• Fs.ASCII

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.20.11 Write

Writes arbitrary text to an arbitrary text file. If the file exists, it will be overwritten. If the file doesn’t
exist, itwill be createdwith thegivencontents. ThecontentsarewrittenusingUTF-8encodingwithout
a byte order mark (BOM).

Throws appropriate exceptions if the write fails.

Sirenia 83

Flows September 23, 2020

Parameters

• path the file system path to write to
• data a string with the data to write
• options an optional options object. Supported options are;

– base64 a boolean. If true, interprets the data argument as a base64 string andwrites the
data to disk as binary data. Defaults to false

– writeBom a boolean. If true, a utf-8 byte-order-mark sequence is prepended to the file.
This helps other applications detect the encoding of the file. Defaults to false. Is ignored if
the base64 option is true.

– encoding The encoding with with to write the file (default is ”UTF-8”).

Example

Fs.write(’c:\\somedir\\somefile.html’, ’<html><body><h1>Generated html!</h1></body></html>’);

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.20.12 Synchronise two directories

If you need two synchronise the files in two directories, i.e. make sure all files in the source directory
are copied to the destination directory you can use the Fs.sync(...) method.

Examples

// Make sure the two directories are completely synchronised, delete superfluous files from destination
Fs.sync(”C:\\MySourceDirectory”, ”C:\\MyDestinationDirectory”);
// uhe same but don’t delete those files in the destination directory which are not present in the source
Fs.sync(”C:\\MySourceDirectory”, ”C:\\MyDestinationDirectory”, { deleteSuperfluous: false });

3.20.13 Temp file

The tmpfile function will generate a random, non-conflicting filename in the temp folder.

Sirenia 84

Flows September 23, 2020

Example

var tmpFilePath = Fs.tmpfile();

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.21 App

The App variable contains functions relating to the app itself.

3.21.1 Location

Returns the current location (if applicable for the given application type -- non-webapps do not sup-
port this).

Example

var loc = App.location();

Support

• ChromeDriver
• IEDriver

3.21.2 Navigate

Navigates to the given url. If the url is relative (e.g. somefolder/somefile.html) it will get ap-
pended to the current url.

Parameters

• url a string representing the destination for the navigation act

Sirenia 85

Flows September 23, 2020

Example

// Absolute url
App.navigate(”http://dr.dk”);

// Relative url
App.navigate(”news”);

Support

• ChromeDriver
• IEDriver

3.21.3 Session write

Store a value in the current session storage. This will be available across flows and for all applications.

Parameters

• key a string denoting the key to store the value under
• value an object to store
• options an optional options object. Supported options are;

– expires a timeout in minutes - after this interval has passed the value will be deleted.
Default is 1440min (= 1 day).

Example

// Storing a simple value - a string
App.session().write(’mykey’, ’myvalue’);

// Storing an object - expires in 1 hour
App.session().write(’myotherkey’, { greeting: ’hello’ }, { expires: 60 });

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

Sirenia 86

Flows September 23, 2020

3.21.4 Session read

Read a value stored in the current session.

Parameters

• key a string denoting the key to retrieve the value for

Example

var v = App.session().read(’mykey’); // e.g. will return ’myvalue’

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.21.5 Session delete

Delete a value.

Parameters

• key a string denoting the key to delete

Returns

The value deleted.

Example

var v = App.session().delete(’mykey’); // e.g. will return ’myvalue’

Sirenia 87

Flows September 23, 2020

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.21.6 Quit

Quits the application - be aware that this is a hard shutdown and the userwill not be prompted to
save any information before the application exits.

Example

App.quit();

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.21.7 Focused field

Returns a special field, which targets the currently focused UI element of the application. This can
help in tricky caseswhere aUI elementmust be reachedbymeansof tabbing. UsingApp.focusedField,
even such a UI element can support actions like inspect, read and input. App.focusedField can also
be used to verify that the focus is where it’s meant to be.

Example

var inspect = App.focusedField.inspect();

Support

• ChromeDriver
• IEDriver

Sirenia 88

Flows September 23, 2020

• JavaDriver
• NativeDriver

3.21.8 Getting access to an embedded browser instance for native apps

Note: The following only applies to native applications with embedded Internet Explorers.

Use the App.browserAt(path, options)method to get a DOM instance. The path argument
is the path to the UI element containing the embedded browser - this normally has the url of the page
displayed as its name and you can thus use the url as (part of) the path.

Alternatively you can use an existing field;

var f = new Field(”**/Browser”);
var b = App.browserAt(f);
// or simply
b = f.asBrowser();

DOMmethods

Once you have DOM object you can invokemethods on it and read selected properties.

Title

var b = App.browserAt(”**/Browser”);
// Access the title
var title = b.title;

Location

var b = App.browserAt(”**/Browser”);
// Access the location
var url = b.location;

Eval(js)

Eval some JavaScript in the embedded instance.

var b = App.browserAt(”**/Browser”);
var result = b.eval(”(function() { return ’Hello, world!’; })();”);

Sirenia 89

Flows September 23, 2020

getElementById(id)

Returns a DOMElement (see below) given one with the id exists.

var b = App.browserAt(”**/Browser”);
var elm = b.getElementById(”foo”);

getElementsByTagName(tag)

Returns an array of DOMElements with the given tag.

var b = App.browserAt(”**/Browser”);
var allInputElements = b.getElementsByTagName(”input”);

querySelector(query)

Returns the first DOMElementmatching the given query.

var b = App.browserAt(”**/Browser”);
var foo = b.querySelector(”.foo”);

querySelectorAll(query)

Returns an array of DOMElements matching the given query.

var b = App.browserAt(”**/Browser”);
var allFooClassedElements = b.querySelectorAll(”.foo”);

DOMElementmethods

A DOMElement represents a single element in the DOM. It has the following properties andmethods.

TagName

// we assume we have gotten the ‘elm‘ from a ‘DOM‘ method invocation e.g. via ‘getElementById‘
var tag = elm.tagName;

InnerText, innerHTML and outerHtml

Sirenia 90

Flows September 23, 2020

var t = elm.innerText;
var hi = elm.innerHTML;
var ho = elm.outerHTML;

Checked

Applies only to checkboxes and radio buttons.

var isChecked = elm.checked;
// we can also check the input using this property
if (!isChecked) {
elm.checked = true;

}

GetAttribute(attr)

Get an attribute of the DOMElement.

var id = elm.getAttribute(”id”);

Click()

Click the DOMElement - only makes sense for elements that are clickable.

elm.click();

Input

Get/set the value of an input- or textarea element.

var content = elm.input;
// update it
elm.input = ”foo”;

Select()

Selects and element.

elm.select();

Sirenia 91

Flows September 23, 2020

3.21.9 Set browser popup behavior

For the embedded chrome browser, you can specify what should happen when the automated page
wants to open a popup window. The available options are as follows:

• default the popup is loaded in a new desktop window. Note that no automation is available
in such a popup window. As the name suggests, this is the default behavior.

• prevent no popup window is shown. The user does not see any indication that a popup win-
dowwas requested by the site

• navigate themain window navigates to the url that was to be shown in a popup. This allows
automationof thepopupcontentbutno further automationof thepage that triggeredecreation
of the popup.

App.setPopupBehavior(’prevent’);

Support

• Hosted Chrome

3.22 Sticky

A sticky is a persistent windowwhich can be configured to remain top-most as long as it’s shown. The
user is able to interact with the items shown in the sticky e.g. clicking on links, opening pdf previews
etc. Keyboard interaction is also supported, use:

Key Action

↓ Focus next (down) item

↑ Focus last (up) item

.or - Toggle collapsed state of item

<space> Run primary action (depends on the type of the item)

<enter> Run secondary action

<esc> Close sticky (or exit from search if search field is focused)

any char Open search field

Sirenia 92

Flows September 23, 2020

3.22.1 Open

Open a new sticky windowwith the given name and opts. The function can be calledmultiple times
with the same name argument in order to update an already showing sticky.

Parameters

• name the name of the window to open, only one sticky-window can have this name
• opts is an object containing the configuration for the sticky, it may have the following proper-
ties:

– embed (boolean, default false) should the sticky be embedded in the window of its
owner application? When embed is set to true some of the below options are not relevant

– resizable (boolean, default false) should it be possible to resize the sticky window
– movable (boolean, default false) should it be possible to move the sticky window
– searchable (boolean, default false) should the contents of the sticky be searchable
– showFooter (boolean, default false) should a foother with a nice logo be shown
– fontSize (int, default 12) the base font size to use for items in the sticky
– focusOnUpdate (boolean, default false) when the sticky is updated should we focus
the sticky window again?

– topMost (boolean, default false) should the sticky be top-most always
– title the title of the sticky window
– location determining where the sticky should be shown, contains:
– typewhich type of position - currently only ’absolute’ is allowed
– top px from the top of the screen
– left px from the left side of the screen
– width px width of sticky
– height px wheight of sticky
– items a list of sticky items to show in the window, each is defined by:
– typewhich type of item - see below
– more depending on the type, see below

Items

We support the following types of items.

GIF

The first is GIF which simply shows an (animated) gif - it may have the following properties:

• source an url for a gif, can be remote or local

Sirenia 93

Flows September 23, 2020

ACTION

An ACTION will run the flow with the name given when the sticky is clicked. For the ACTION type the
following are valid.

• name the name of the action to launch - this should be unique
• header and body if set these will be shown instead of action name on sticky
• height the height of the item in pixels
• inputs is an object containing the named inputs for the action
• focus whether or not the item should have focus (only the first item with this property set to
true will be focused)

PDF document

Will show a pdf with an optional preview. The options are:

• source an url (remote or local) to the pdf to show
• header and body if set these will be shown instead of the source
• linkText an optional text (or unicode icon) to show as a link to the source file
• link an optional link to direct the user to (default is value of source)
• height the height of the preview pane in pixels
• collapsiblewhether or not the preview should be collapsible (default false)
• collapsed the initial state of the preview (default false)
• saveablewhether or not it should be possible to save the pdf (default true)
• printablewhether or not it should be possible to print the pdf (default true)
• focus whether or not the item should have focus (only the first item with this property set to
true will be focused)

HTML page

Will render a HTML snippet or a whole HTML page into an item. Should be used for render styled text,
e.g. headers and such - not recommended for complete pages. Options are:

• source html text or an url (remote or local) to the pdf to show
• height the height of the item
• focus whether or not the item should have focus (only the first item with this property set to
true will be focused)

LINK

Will act as a link (e.g. to an internet resource or a local file).

• link the link to activate (when clicked)
• text optional - the text to display (default is the url of the link)
• prefix optional - the text to display before the link text

Sirenia 94

Flows September 23, 2020

• suffix optional - the text to display after the link text
• focus whether or not the item should have focus (only the first item with this property set to
true will be focused)

Example

Sticky.open(
’mySticky’,
{
embed: true,
location: {
type: ’absolute’,
top: 100,
left: 100

},
items: [
{
type: ’GIF’,
source: ’http://gifs.com/cat’

},
{
type: ’ACTION’,
name: ’SomeOtherAction’,
header: ’Some other action’,
body: ’Click to run’

},
{
type: ’PDF’,
source: ’http://pdfworld.com/arandompdf.pdf’,
link: ’http://pdfworld.com/aboutarandompdf’,
height: 100,
collapsible: true,
collapsed: false,
saveable: false,
focus: true

},
{
type: ’HTML’,

Sirenia 95

Flows September 23, 2020

source: ’<h1>Big header</h1><h2>Smaller header</h2>’,
height: 50

},
{
type: ’LINK’,
link: ’http://sirenia.eu’,
prefix: ’Go to ’, text: ’Sirenia’, suffix: ’ now’

}
]

}
);

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.22.2 Model

Get the model used to construct the sticky,

Parameter

• name the name of the sticky to retrieve the model for (must be opened prior...)

Example

var m = Sticky.model(’mySticky’);
// Perhaps do some changes to model m and then
// Sticky.open(’mySticky’, m);
// to update the stikcy with the changes made to its model

Support

• ChromeDriver
• IEDriver

Sirenia 96

Flows September 23, 2020

• JavaDriver
• NativeDriver

3.22.3 Close

Close a named sticky.

Parameter

• name the name of the sticky to close (must be opened prior...)

Example

Sticky.close(’mySticky’);

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.22.4 Hide

Hide a named sticky.

Parameter

• name the name of the sticky to hide (must be opened prior...)

Example

Sticky.hide(’mySticky’);

Sirenia 97

Flows September 23, 2020

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.22.5 Show

Show a previously hidden sticky.

Parameter

• name the name of the sticky to show (must be hidden prior...)

Example

Sticky.show(’mySticky’);

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.23 Timer

The timer module provides a simple interface for timing parts of flows. It is especially useful in com-
bination with our Analytics product allowing you to time crucial parts of your flows.

3.23.1 Start

Start a named timer. If you invoke this method twice with the same name (argument) you’ll reset the
timer every time.

Sirenia 98

Flows September 23, 2020

Parameter

• name the name of the timer to start

Example

Timer.start(’myTimer’);

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.23.2 Log

Log an event on a named timer. Useful only in combination with our Analytics product. The logged
event will contain the name of the timer, the milliseconds since the timer was started and the given
message.

Parameter

• name the name of the timer to log an event on
• message the message to log

Returns

The number of milliseconds since the timer was started.

Example

Timer.log(’myTimer’, ’A message goes here’);

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

Sirenia 99

Flows September 23, 2020

3.23.3 Stop

Stop a named timer.

Parameter

• name the name of the timer to stop
• logwhether or not a message should be logged

Returns

The number of milliseconds since the timer was started.

Example

// Will log an event and stop ’myTimer’
Timer.stop(’myTimer’, true);

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.24 Notifications

The notifications module makes it possible to display non-interactive notifications.

3.24.1 Show

Shows a notification.

Sirenia 100

Flows September 23, 2020

Parameter

• name the name of the notification, save this for future update invocations
• header the header text to show
• body the body text to show
• options is an object with the following additional options:

– severity the severity of the notification, choose between ”INFO”, ”WARN” and ”ERROR”.
Default is ”INFO”.

– timeout seconds for the notification to show. Default is 30.
– callback a javascript function to execute when the user clicks the notification. Default
null.

– embed defines whether the notification should be embedded in the current application
or shown on the desktop (default is false = show on desktop)

– sound a string (one of asterisk, beep, exclamation, hand, question) which in-
dicates a system sound to play once the notification is shown.

– boundsOffset (for embedded notifications) an object with x, y, w and h properties
which define the a rectangle inside the current app which will be used to calculate the
position of the notification

– marginTop (for embedded notifications) an integer with the topmargin for the topmost
notification (can be used to move notifications a bit down or up)

Example

Show an INFO notification for 30 seconds.

Notification.show(’hello’, ’Seasonal greetings!’, ’Felice navidad’, {});

Show aWARN for 5 seconds.

Notification.show(’warn’, ’Its complicated’, ’Something broke down’, { severity: ’WARN’, timeout: 5 });

Notifications with callbacks.

function RaiseTheAlarm() {
Notification.show(’Oh no!’, ’You clicked the first notification’, { severity: ’ERROR’ });

}

// Callback to previously defined function
Notification.show(’warn’, ’Its complicated’, ’Something broke down, click here’, { severity: ’WARN’, timeout: 5, callback: RaiseTheAlarm });

// Callback to anonymous function

Sirenia 101

Flows September 23, 2020

Notification.show(
’warn’,
’Its complicated’,
’Something broke down, click here’,
{
severity: ’WARN’,
timeout: 5,
callback: function() {
Log.info(’clicked’, ’Notification was clicked’);

}
});

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.24.2 Update

Update the information in an already shown notification.

Parameter

• name the name of the notification
• header the header text to change
• body the body text to change
• options is same as for invoking show

Example

Update the notification named ”hello”.

Notification.update(’hello’, ’Seasonal greetings anew!’, ’Merry Christmas’, {});

Support

Sirenia 102

Flows September 23, 2020

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.24.3 Close

Close an open notification. Notifications will automatically be hidden but this can force that action.

Parameter

• name the name of the notification

Example

Close the notification named ”hello”.

Notification.close(’hello’);

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.25 Tasks

TheTasksmodule canbeused toparalellizeparts of a flow. This is useful for e.g. doing concurrenthttp
requests or running background tasks. It is not intended for use with field-operations i.e. interacting
with a host applications UI since this interaction cannot be parallelized. Furthermore you should not
display dialogs in parallelized tasks as they can block the calling flow.

3.25.1 Run

Use the runmethod to start a new task.

Sirenia 103

Flows September 23, 2020

Parameters

• fun a function to run in parallel

Returns

• a Task object.

Example

Run some tasks and wait for the result.

var t = Task.run(
function() {
var i = 0;
while (i<1000) {
i = i + 1;

}
return i;

});

// Wait for t to complete or 1000ms to elapse
if (t.wait(1000)) {
// Access the result
if (t.done && !t.failed) {
Debug.showDialog(”It completed with result=”+t.result);

} else (t.failed) {
// only access t.error if t.failed == true
Debug.showDialog(”Took too long or errored? ”+t.error !== null);

}
} else {
// 1 sec elapsed without the task completing

}

Run a task and execute a function when the task is done.

Task.run(...).then(function(result){
// do something with the result of the task

});

Sirenia 104

Flows September 23, 2020

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.25.2 Wait for all tasks to complete

This is used to wait until all the tasks given as arguments complete or givenmilliseconds elapse.

Parameters

• tasks - an [array of tasks or javascript functions] to run asynchronously (and then wait for)
• timeout [int] denoting the max number of milliseconds to wait for the tasks to complete

Returns

A [bool] indicating wether or not all tasks completed.

Example

var t = Task.run(function() { ... });
var tasks = [Task.run(function() { ... }), function() { ... }, t];

// Wait for tasks to complete or 1000ms to elapse
if (Task.waitAll(tasks, 1000)) {
for (var i=0; i<tasks.length; i++) {
Debug.showDialog(”Task ”+i+” resulted in ”+tasks[i].result);

}
Debug.showDialog(”It completed!”);

} else {
Debug.showDialog(”Took too long”);

}

Support

• ChromeDriver
• IEDriver

Sirenia 105

Flows September 23, 2020

• JavaDriver
• NativeDriver

3.25.3 Wait for any tasks to complete

This is used to wait until one of the tasks given as arguments completes or givenmilliseconds elapse.

Parameters

• tasks - an [array of tasks or javascript functions] to run asynchronously (and thenwait for one
of)

• timeout [int] denoting themax number ofmilliseconds towait for any of the task to complete

Returns

An [int] denoting the index of the first task to complete or -1 if no tasks completewithin given deadline.

Example

var t = Task.run(function() { ... });
var tasks = [Task.run(function() { ... }), function() { ... }, t];

// Wait for tasks to complete or 1000ms to elapse
var idx = Task.waitAny(tasks, 1000);
if(idx > 0) {
Debug.showDialog(”We have a winner: ”+idx);

} else {
Debug.showDialog(”Took too long. Everybody lost.”);

}

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

Sirenia 106

Flows September 23, 2020

3.25.4 JavaScript Task

A javascript representation of a .NET task. It has 2 methods; wait(milliseconds) which can be
used to wait for the task to complete or the given milliseconds to elapse, whichever comes first and
then(func)which can be used to run a function when the task completes.

For an example see the Runmethod on the Taskmodule.

3.26 Guid

This very simplemodule provides utility functionality for dealingwith globally unique identifiers - aka
standardized random strings. Use these if you need to generate a unique file name or unique string in
general.

3.26.1 Get

Returns a new random standard globally unique identifier

Example

var guid = Guid.get();

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.27 Tables

The tables module provides functionality to read and write information stored on Kwanza and acces-
sible from the configuration interface (Cuesta). It is meant to provide an easy way to add mapping or
other types of tabular data to a flow. The UI for managing tables are shown below.

Note that only UTF8 formatted csv files are supported.

Sirenia 107

Flows September 23, 2020

Navigation

Navigating the indvidual cells in the table can be done via the keyboard in a spreadsheet like man-
ner. alt+<arrow-key>will move the focus depending on the arrow-key pressed. The video below
shows an example of this (the keys pressed are shown in the bottom left corner of the video).

{{< youtube qzjc3XP12qc >}}

Inserting and removing rows

Inserting and deleting rows can also be done via the keyboard. Press ctrl+n to insert a row directly
below the currently focused row.

{{< youtube TZPgM5eF3Es >}}

Deleting a row is done via the ctrl+backspace key. It will remove the currently focused row.

{{< youtube sURkABQTds4 >}}

Inserting and removing columns

This isdonesimilarly toaddingand removing rowsbut thecursormustbeplaced in thecolumnheader.
ctrl+n adds a new column, while ctrl+backspace removes the current.

{{< youtube ssCeIqqX05Y >}}

Shortcuts

Key Action

alt+↓ Focus cell below

alt+↑ Focus cell above

alt→ Focus cell right

alt+← Focus cell left

ctrl+shift+a Insert new row/column

ctrl+shift+backspace Remove row/column

Sirenia 108

Flows September 23, 2020

3.27.1 Read table as amap

The.map functionwill parsea table as amap,meaning that itwill useagivencolumnasan index. This
is mainly useful if there is a column with unique values to use for the index. The returned structure
will be a map with the column headers as keys.

Example

Given the table named foo:

A B

idx1 val1

idx2 val2

And the code:

var m = Table.map(’foo’, ’A’);

You’ll get the following object back:

{
’idx1’: { ’A’: ’idx1’, ’B’: ’val1’ },
’idx2’: { ’A’: ’idx2’, ’B’: ’val2’ }

}

Which can then be used in the following manner:

var idx2val = m[’idx2’][’B’];
// or if the column names are valid javascript identifiers
var idx1val = m.idx1.B;

Parameters

• name - [string] the name of the table to create a map from
• index - [string] the name of the column to use as an index
• options - [object] an optional options object which supports
• useCache to set whether to allow use of a disk-based cache when fetching the table (default
is true)

Sirenia 109

Flows September 23, 2020

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.27.2 Read table as list of rows

The .rows function will return the raw table as a javascript array of arrays.

Example

Given the table named foo identical to the table from .map and the code:

var m = Table.rows(’foo’);

You’ll get the following object back:

{
rows: [
[’idx1’, ’val1’],
[’idx2’, ’val2’],

]
}

Which can then be used in the following manner:

var idx2val = m.rows[1][1];

Parameters

• name - [string] the name of the table to create from
• options - [object] an optional options object which supports
• useCache to set whether to allow use of a disk-based cache when fetching the table (default
is true)

Support

• ChromeDriver
• IEDriver

Sirenia 110

Flows September 23, 2020

• JavaDriver
• NativeDriver

3.27.3 Update the contents of a table

The object returned from both .map and .rows contains a .save function which can be used to
write data back to a table.

Examples

Update existing entries

Given the table from the previous examples and the code:

var m = Table.rows(’foo’);
m.rows[0][1] = ’newval1’;
m.save();

Will change the value of the specified cell and update the table. This also works if .map is used:

var m = Table.map(’foo’, ’A’);
m.idx1.A = ’newval1’;
m.save();

Add new entries

Adding to a table read by the rows approach:

var m = Table.rows(’foo’);
m.rows.push([’idx3’, ’val3’]);
m.save();

Thiswill add anew rowwithidx3 andval3. Whenusing rows theorder of the input elementsmatter
and should match the order of the columns.

The same information can be added when the table is read via the map approach as follows:

var m = Table.map(’foo’, ’A’);
m[’idx3’] = { ’A’: ’idx3’, ’B’: ’val3’};
m.save();

Sirenia 111

Flows September 23, 2020

Remove entries

Removing a row froma table readby therows approach is doneby removing the corresponding array
entry:

var rowToDelete = 0;
var foo = Table.rows(”foo”);
foo.rows.splice(rowToDelete, 1); // Delete the row w index 0
foo.save();

and the equivalent delete of a entry from a map table:

foo = Table.map(’foo’, ’A’);
delete foo[”idx1”]; // Delete the entry with key ’idx1’
foo.save();

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.27.4 Use the contents of a Table as options for a typeahead

This is achieved by calling the selectFrommethod on the structure created by the .map function.
The selectFrom function takes either a format string or an object with options to generate the con-
tent for a typeahead.

var m = Table.map(...);
m.selectFrom(’{{someColumn}} some text {{someOtherColumn}}’);

Using a format string (above) and an object with options (below).

var m = Table.map(...);
m.selectFrom({
format: ’{{someColumn}} some text {{someOtherColumn}}’,
minInputLength: 3,
filterMode: ’contains’

});

Sirenia 112

Flows September 23, 2020

3.27.5 Tables as queues

It is possible to use a table as a sort ofmessage queue. To do this use theArray.push,Array.pop
as well as Array.unshift and Array.shift methods on a table. These will modify the table
whichcan thenbe.save()d to thebackend. Themethodsare safe touseconcurrently frommultiple
machines.

“‘javascript var foo = Table.rows(”foo”); // Enqueue two items to the table/queue Array.push(foo,
[”idx10”,”val10”], [”idx11”,”val11”]); foo.save(); // Now we’ll remove them again var item1 = Ar-
ray.pop(foo); var item2 = Array.pop(foo); foo.save(); // The save is needed to ensure the table has not
beenmodified elsewhere ---

3.28 Env

The env module provides some contextual information for flows.

3.28.1 Username

Get the username for the current user.

Example

var u = Env.userName;

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.28.2 Name of machine

Get the name of the machine.

Example

Sirenia 113

Flows September 23, 2020

var m = Env.machineName;

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.28.3 Domain

Get the domain for the current user.

Example

var u = Env.userDomain;

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.28.4 Groups

Get the AD groups for the current user. Includes user name andmachine name.

Example

var groups = Env.userGroups;

groupswill now be an array of strings.

Support

• ChromeDriver
• IEDriver

Sirenia 114

Flows September 23, 2020

• JavaDriver
• NativeDriver

3.28.5 Primary screen

Get information about the primary screen of the local machine.

Example

var s = Env.primaryScreen;

swill now be an object like so:

// s
{
width: 1024,
height: 768,
primary: true

}

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.28.6 Screens

Get information about all the screens attached to the local machine.

Example

var screens = Env.screens;

screenswill now be an array of screen objects, like so:

// screens
[
{

Sirenia 115

Flows September 23, 2020

width: 1024,
height: 768,
primary: true

},{
width: 1280,
height: 1024,
primary: false

}
]

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.28.7 Version

Get the Manatee version.

var v = Env.version;

3.28.8 Branch

Get the branch of Manatee - can indicate whether its a production or testing version for example.

var branch = Env.branch;

3.29 Crypto

The Cryptomodule can be used to encrypt/decrypt secrets and other sensitive information. It can
be used together with e.g. the Table module to keep passwords or similar items for use in flows but
not visible for other than the intended users.

Sirenia 116

Flows September 23, 2020

3.29.1 Encrypt

Make an encrypted string from the given input and access-scope. Access-scope can be:

• Crypto.forUser to allowonly the current logged inuser todecrypt the information. Decryp-
tionmay happen on a differentmachine or using a different application thanManatee, but only
the current logged in Windows user will be able to do the decrypt.

• Crypto.forMachine to only allow users on the current machine to decrypt. Again decrypt-
ing is not limited to Manatee - any program on the local machine will be able to decrypt.

• a string password to only allow users who know the supplied password to decrypt the mes-
sage (min 12 characters).

• null or undefined or no argument given to make the encrypted string decryptable only by
the Manatee application across all users and all machines.

Examples

// for the current user
var encryptedString = Crypto.encrypt(”my secret”, Crypto.forUser);
// for the current machine
encryptedString = Crypto.encrypt(”my secret”, Crypto.forMachine);
// for users with the correct password
encryptedString = Crypto.encrypt(”my secret”, ”password12345678”);
// for Manatee eyes only
encryptedString = Crypto.encrypt(”my secret”);

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.29.2 Decrypt

Take an ecnrypted string and decrypt. Supply it with the same access-scope usedwhen the stringwas
encrypted.

Examples

Sirenia 117

Flows September 23, 2020

// for the current user
var originalString = Crypto.decrypt(encryptedString, Crypto.forUser);
// for the current machine
originalString = Crypto.decrypt(encryptedString, Crypto.forMachine);
// for users with the correct password
originalString = Crypto.decrypt(encryptedString, ”password12345678”);
// for Manatee eyes only
originalString = Crypto.decrypt(encryptedString);

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.30 Clipboard

The Clipboard module lets you interact with the windows clipboard for programmatic copy and
paste purposes.

3.30.1 Get

Get the current string value of the system clipboard

Examples

var copyValue = Clipboard.get();

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

Sirenia 118

Flows September 23, 2020

3.30.2 Set

Sets the current value of the system clipboard to a string. By default, the value is only available for
pasting until the flow has ended. If you need to be able to paste the value after the flow has ended,
use the persist option as shown below. It is best not to use the persist option when sensitive
data is put in the clipboard.

Examples

Clipboard.set(’This text can be pasted by the user or by the flow until the flow has finished’);

Clipboard.set(’This text can be pasted even after the flow has finished’, { persist: true });

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.30.3 Clear

Clears the current value of the system clipboard. Useful if the flow needs to temporarily put sensitive
data in the clipboard.

Examples

try {
Clipboard.set(’This is not for everyone to see’);
Clipboard.paste();

} finally {
Clipboard.clear();

}

Support

• ChromeDriver
• IEDriver

Sirenia 119

Flows September 23, 2020

• JavaDriver
• NativeDriver

3.30.4 Copy

Carries out a standard copy (Ctrl + c) operation

Examples

Clipboard.copy();
var copiedValue = Clipboard.get();

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.30.5 Cut

Carries out a standard cut (Ctrl + x) operation

Examples

Clipboard.cut();
var cutValue = Clipboard.get();

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.30.6 Paste

Carries out a standard paste (Ctrl + v) operation

Sirenia 120

Flows September 23, 2020

Examples

Clipboard.set(’some text to paste’);
Clipboard.paste();

Support

• ChromeDriver
• IEDriver
• JavaDriver
• NativeDriver

3.31 Desktop

The Desktop module is a Windows 10 only can be used for manipulating virtual desktops and for
moving application windows between desktops.

3.31.1 All

Get a list containing the ids of all virtual desktops.

Example

var desktops = Desktop.all();
for (var i=0; i<desktops.length; i++) {
Debug.showDialog(”Desktop ”+desktops[i]);

}

3.31.2 Current

Get the id of the current/active virtual desktop.

Example

var current = Desktop.current();

Sirenia 121

Flows September 23, 2020

3.31.3 Add a new desktop

Will create a new virtual desktop and return its id.

Example

var d = Desktop.add();

3.31.4 Moving windows between virtual desktops

The moveWindow, moveWindowRight and moveWindowLeft methods can be used to move a
window between virtual desktops.

Example

// Move the window of the current application to an identified desktop (123)
var success = Desktop.moveWindow(”123”);
// Move window to the desktop to the right of the current desktop
var idOfDesktopMovedTo = Desktop.moveWindowRight();
// ... same for left
idOfDesktopMovedTo = Desktop.moveWindowLeft();

3.31.5 Switching between desktops

Use theswitchTo,switchRight andswitchLeftmethods to switch between virtual desktops.

Example

// Switch to an identified desktop
var idOfDesktopSwitchedTo = Desktop.switchTo(”123”);
// Switch to a desktop to the left/right of the current
vidOfDesktopSwitchedTo = Desktop.switchLeft();
idOfDesktopSwitchedTo = Desktop.switchRight();

3.32 Html parsing and querying

The Htmlmodule can be used to parse and query html formatted files and remote pages.

Sirenia 122

Flows September 23, 2020

3.32.1 Loading data

Themethodsload andloadFrom canbeused to loadandparse ahtml document. Theyboth return
a HtmlDoc object which can be used for querying/extracting information.

Example

// Load html from a string
var doc = Html.load(”<html><body>Hello, world!</body></html>”);
// Load html from an url
doc = Html.loadFrom(”http://sirenia.eu”);

3.33 HtmlDoc

The HtmlDoc object return from Html.load and .loadFrom has two primarymethods for query-
ing and extracting information from the html document it represents - the first is via an XPath query
and the second is to convert the html to json.

3.33.1 XPath

The xpathmethod can be used to query the HtmlDocwith a given XPath query.

Example

var d = Html.load(”<html><body>Hello</body>”);
var body = d.xpath(”//body”);
Debug.showDialog(body.innerText); // shows ”Hello”

3.33.2 Converting to json

Converting the html to json is done with the .json() method. Each node in the resulting tree of
objects has the following properties:

• attrs an object containing the attributes of the html node
• children is an array of child json nodes
• innerText is a textual representation of the contents of the node
• tagName is the name of the original html node

It also has an xpathmethod which can be used to query the subtree of the json node.

Sirenia 123

https://en.wikipedia.org/wiki/XPath

Flows September 23, 2020

Example

var d = Html.load(”<html><body>Hello</body>”);
var json = d.json();
Debug.showDialog(json.tagName);

3.33.3 QuerySelectorAll

Use the querySelectorAllmethod to query the HtmlDoc using CSS selectors.

// We’ll assume we have a ‘HtmlDoc‘ d
var myClassDivs = d.querySelectorAll(”div.myClass”);

3.33.4 QuerySelector

ThequerySelectorworks similarly to thequerySelectorAll except it returns the first hit only.

3.33.5 Table

The table(...) function can be used to extract js objects from html tables.

Given the table:

<table id=”myTable”>
<thead>
<tr><td>A</td></tr>

</thead>
<tbody>
<tr><td>100</td></tr>
<tr><td>200</td></tr>

</tbody>
</table>

We can use the table function as follows:

// Assume we have the html already loaded in ‘d‘
var t = d.table(”#myTable”);
// and now we can query the contents of the table as follows
var firstRowFirstColumn = t[0][”A”];

Sirenia 124

Flows September 23, 2020

if the table does not have header information then the function will return a double array.

We can also use an object to pinpoint the header and/or the body of the table. This is useful if we have
on our hands a table where the header is one location while the data is somewhere else. This is often
the case for scrollable tables.

<table id=”myTableHeader”>
<thead>
<tr><td>A</td></tr>

</thead>
</table>
<table id=”myTableBody”>
<tbody>
<tr><td>100</td></tr>
<tr><td>200</td></tr>

</tbody>
</table>

Now do this:

// Assume we have the html already loaded in ‘d‘
var t = d.table(
{
headerAt: ”#myTableHeader thead tr th”,
rowAt: ”#myTableBody tbody tr”

}
);
// and now we can (again) query the contents of the table as follows
var firstRowFirstColumn = t[0][”A”];

The headerSelector needs to point out the individual header elements, typically th elements,
while the rowSelectormust point out the tr elements in the table.

3.34 Tracer

The Tracermodule enables remote (via flows) controlling of the tracer functionality. To enable the
UI of the Tracer open the settings for Manatee and search for ”Tracer”. When the UI is enabled it will
show a small window (notification-style) in which output from the current flow is shown. Output in-
cludes which API functions are called, which fields are interacted with etc. The window also holds

Sirenia 125

Flows September 23, 2020

buttons to pause, resume and step forward in the flow as well as a button to pause and bring up the
debug.ger window. By using this module in a flow you can control much of the same functionality.

Note that care should be taken using the Tracer functionality in production flows. It is primarily
a developer tool.

3.34.1 Delay

The delaymethods controls how fast your flow is running. By setting a >0 delay you can slow down
your flow.

Example

// Delay each flow ”step” 1s
Tracer.delay(1000);

3.34.2 Pause

Allows you to pause the flow. Resuming can only be done in the flow-tracer UI.

Example

Tracer.pause();

3.34.3 Resume

Resume a paused flow. Be aware that you can only resume a flow using this method if it is running
asynchronously.

Example

Tracer.resume();

3.34.4 Message

Show amessage in the Tracer UI.

Sirenia 126

Flows September 23, 2020

Tracer.msg(”Hello from a flow”);

3.35 Manatee

The Manateemodule allows flows to shutdown and restart Manatee itself.

3.35.1 Shutdown

This shuts down Manatee. Use with caution - especially when running the flow on many machines
at once as there is no easy way to reverse such an action. The shutdown occurs after the flow has
completed. For immediate (mid-flow) shutdown, pass true as an argument. Note that this is not a
good way to abort a flow.

Example

Manatee.shutdown();

3.35.2 Restart

This restarts Manatee. The restart occurs after the flow has completed. For immediate (mid-flow)
restart, pass true as an argument.

Example

Manatee.restart(true);

3.36 HL7

The HL7module can be used to parse content in the hats-and-pipes format and get JSON back.

Sirenia 127

Flows September 23, 2020

3.36.1 Parse

The parse(...) method takes an HL7 message (as a string) and returns an object as a
Javascript representation of the message. For an idea of the structure you can consult a tool
like http://hl7.eu/refactored/seg.html.

Example

// Read the hl7Message from e.g. a file
var hl7Object = HL7.parse(hl7Message);
// Access the first-name of the patient (if available)
// See http://hl7.eu/refactored/segPID.html#108 and http://hl7.eu/refactored/dtXPN.html
var firstName = hl7Object[”PID”][0][”5”][”1”];

3.37 Plugins

The Pluginmodule can be used to dynamically load extra functionality in the form of modules and
customized context-participants or new and customized application types.

Generally additionalmodules comes in two flavours; those thatmust simply be loaded (newmodules
for the Javascript runtimeandnewcontext-participants) and those requiring configuration andwhich
may be active and runnable.

3.37.1 Loading a plugin

You need to know the name and version of a plugin to load it.

Plugin.load(”MyPlugin”, ”v1.0.0”);
// Assuming MyPlugin contains a module called MyModule, you can now do something like:
MyModule.doSomething(”foo”, 1000);

Note that MyPlugin and MyModule are simply examples and the above snippet will fail because
the plugin andmodule do not exist.

3.37.2 Starting and configuring a plugin

Sirenia 128

Flows September 23, 2020

// Note: Only one instance of each plugin identified by its name and version are allowed
Plugin.start(”MyPlugin”, ”v1.0.0”, { ConfParam1: ”foo”, ConfParam2: 100 });

The plugin should now be started and its functionality activated - whatever that may be.

3.37.3 Stop a running plugin

Deactivates the plugin and its functionality.

Plugin.stop(”MyPlugin”, ”v1.0.0”);

3.37.4 Check the status of a plugin

var s = Plugin.status(”MyPlugin”, ”v1.0.0”);
// if the plugin is runnable then it will have a ‘state‘ property
// which will be either ”STOPPED” or ”RUNNING”
Debug.ger(s.state);
// it will also contain its configuration
Debug.ger(s.configuration);

Sirenia 129

	Inputs
	Fields
	Global objects
	Dialog
	Info dialog
	Warn dialog
	Input dialog
	HTML based input dialog

	Flow
	Shared functionality
	Run flow

	Wait
	Wait for seconds
	Wait for milliseconds
	Wait for field
	Wait for field to disappear
	Wait for window
	Wait for lock
	Wait for click
	Wait for predicate

	Xml
	Load xml
	Load XML from url

	XmlDoc
	XPath
	JSON

	HTTP
	GET
	POST
	PUT
	DELETE

	FTP
	Read
	Write

	Db
	Connect
	Database
	Transaction
	Database

	Csv
	Parse
	Stringify

	Excel
	Load
	Delete a sheet
	Update single cell
	Update multiple cells
	Deleting rows and columns from a sheet

	Settings
	Example writing a value
	Example reading a value
	Settings.Manatee
	Example writing values
	Example reading a value

	Log
	Stats from running flow
	Warn
	Info
	Set log level

	HID
	Block input

	HID.Mouse
	Move cursor relative
	Move to an absolute position
	Move to a Field
	Hold a mouse button down
	Release a held down mouse button
	Click with a mouse button

	HID.Keyboard
	Key down
	Key up
	Key press
	Input
	Send

	Window
	Title
	Minimize
	Is minimized
	Maximize
	Is maximized
	Focus
	Send keys
	Restore
	Window with modal dialog shown
	Shown with title
	Dim

	Windows
	All windows
	Windows for current application
	Primary window
	Frontmost/focused window
	Window Proxy

	Processes
	All processes
	Current
	Spawning new processes
	Process proxy

	Debug
	Show dialog
	ger

	Fs
	System folders
	List (ls)
	Make a new directory
	Move file
	Copy file
	Delete file
	Check file presence
	Encrypt file
	Decrypt file
	Read
	Write
	Synchronise two directories
	Temp file

	App
	Location
	Navigate
	Session write
	Session read
	Session delete
	Quit
	Focused field
	Getting access to an embedded browser instance for native apps
	Set browser popup behavior

	Sticky
	Open
	Model
	Close
	Hide
	Show

	Timer
	Start
	Log
	Stop

	Notifications
	Show
	Update
	Close

	Tasks
	Run
	Wait for all tasks to complete
	Wait for any tasks to complete
	JavaScript Task

	Guid
	Get

	Tables
	Read table as a map
	Read table as list of rows
	Update the contents of a table
	Use the contents of a Table as options for a typeahead
	Tables as queues

	Env
	Username
	Name of machine
	Domain
	Groups
	Primary screen
	Screens
	Version
	Branch

	Crypto
	Encrypt
	Decrypt

	Clipboard
	Get
	Set
	Clear
	Copy
	Cut
	Paste

	Desktop
	All
	Current
	Add a new desktop
	Moving windows between virtual desktops
	Switching between desktops

	Html parsing and querying
	Loading data

	HtmlDoc
	XPath
	Converting to json
	QuerySelectorAll
	QuerySelector
	Table

	Tracer
	Delay
	Pause
	Resume
	Message

	Manatee
	Shutdown
	Restart

	HL7
	Parse

	Plugins
	Loading a plugin
	Starting and configuring a plugin
	Stop a running plugin
	Check the status of a plugin

